BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35776326)

  • 1. A Simplified Protocol to Incorporate the Fluorescent Unnatural Amino Acid ANAP into Xenopus laevis Oocyte-Expressed P2X7 Receptors.
    Durner A; Nicke A
    Methods Mol Biol; 2022; 2510():193-216. PubMed ID: 35776326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved ANAP incorporation and VCF analysis reveal details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain.
    Durner A; Durner E; Nicke A
    Elife; 2023 Jan; 12():. PubMed ID: 36598131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded fluorescent probe in mammalian cells.
    Chatterjee A; Guo J; Lee HS; Schultz PG
    J Am Chem Soc; 2013 Aug; 135(34):12540-3. PubMed ID: 23924161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes.
    Shafer AM; Kálai T; Bin Liu SQ; Hideg K; Voss JC
    Biochemistry; 2004 Jul; 43(26):8470-82. PubMed ID: 15222758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonality of Pyrrolysine tRNA in the Xenopus oocyte.
    Infield DT; Lueck JD; Galpin JD; Galles GD; Ahern CA
    Sci Rep; 2018 Mar; 8(1):5166. PubMed ID: 29581437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids.
    Wang N; Ju T; Niu W; Guo J
    ACS Synth Biol; 2015 Mar; 4(3):207-12. PubMed ID: 24847685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-clamp Fluorometry in Xenopus Oocytes Using Fluorescent Unnatural Amino Acids.
    Kalstrup T; Blunck R
    J Vis Exp; 2017 May; (123):. PubMed ID: 28605379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the genetic code in Xenopus laevis oocytes.
    Ye S; Riou M; Carvalho S; Paoletti P
    Chembiochem; 2013 Jan; 14(2):230-5. PubMed ID: 23292655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
    Köhrer C; Sullivan EL; RajBhandary UL
    Nucleic Acids Res; 2004; 32(21):6200-11. PubMed ID: 15576346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Established Protocols for cRNA Expression and Voltage-Clamp Characterization of the P2X7 Receptor in Xenopus laevis Oocytes.
    Schmalzing G; Markwardt F
    Methods Mol Biol; 2022; 2510():157-192. PubMed ID: 35776325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
    Parrish AR; She X; Xiang Z; Coin I; Shen Z; Briggs SP; Dillin A; Wang L
    ACS Chem Biol; 2012 Jul; 7(7):1292-302. PubMed ID: 22554080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
    Meineke B; Heimgärtner J; Caridha R; Block MF; Kimler KJ; Pires MF; Landreh M; Elsässer SJ
    Cell Rep Methods; 2023 Nov; 3(11):100626. PubMed ID: 37935196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids.
    Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K
    ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae.
    Lee HS; Guo J; Lemke EA; Dimla RD; Schultz PG
    J Am Chem Soc; 2009 Sep; 131(36):12921-3. PubMed ID: 19702307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Non-Canonical Amino Acids.
    Leisle L; Valiyaveetil F; Mehl RA; Ahern CA
    Adv Exp Med Biol; 2015; 869():119-51. PubMed ID: 26381943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.