These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35776326)

  • 41. A genetically encoded cyclobutene probe for labelling of live cells.
    Liu K; Enns B; Evans B; Wang N; Shang X; Sittiwong W; Dussault PH; Guo J
    Chem Commun (Camb); 2017 Sep; 53(76):10604-10607. PubMed ID: 28902227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of mammalian cell logic gates controlled by unnatural amino acids.
    Mills EM; Barlow VL; Jones AT; Tsai YH
    Cell Rep Methods; 2021 Oct; 1(6):100073. PubMed ID: 35474893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monitoring protein misfolding by site-specific labeling of proteins in vivo.
    Hsieh TY; Nillegoda NB; Tyedmers J; Bukau B; Mogk A; Kramer G
    PLoS One; 2014; 9(6):e99395. PubMed ID: 24915041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression.
    Rodriguez EA; Lester HA; Dougherty DA
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8650-5. PubMed ID: 16728509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.
    Sakata S; Jinno Y; Kawanabe A; Okamura Y
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7521-6. PubMed ID: 27330112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Site-Directed Unnatural Amino Acid Mutagenesis to Investigate Potassium Channel Pharmacology in Xenopus laevis Oocytes.
    Kim RY; Kurata HT
    Methods Mol Biol; 2018; 1684():253-263. PubMed ID: 29058197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement.
    Smolskaya S; Andreev YA
    Biomolecules; 2019 Jun; 9(7):. PubMed ID: 31261745
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expanding the genetic code of Mus musculus.
    Han S; Yang A; Lee S; Lee HW; Park CB; Park HS
    Nat Commun; 2017 Feb; 8():14568. PubMed ID: 28220771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonsense suppression in eukaryotes: the use of the Xenopus oocyte as an in vivo assay system.
    Bienz M; Kubli E; Kohli J; de Henau S; Grosjean H
    Nucleic Acids Res; 1980 Nov; 8(22):5169-78. PubMed ID: 7465411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of Na
    Shandell MA; Quejada JR; Yazawa M; Cornish VW; Kass RS
    Biophys J; 2019 Oct; 117(7):1352-1363. PubMed ID: 31521331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid and Inexpensive Evaluation of Nonstandard Amino Acid Incorporation in Escherichia coli.
    Monk JW; Leonard SP; Brown CW; Hammerling MJ; Mortensen C; Gutierrez AE; Shin NY; Watkins E; Mishler DM; Barrick JE
    ACS Synth Biol; 2017 Jan; 6(1):45-54. PubMed ID: 27648665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid.
    Xiang Z; Wang L
    J Org Chem; 2011 Aug; 76(15):6367-71. PubMed ID: 21732687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An enhanced system for unnatural amino acid mutagenesis in E. coli.
    Young TS; Ahmad I; Yin JA; Schultz PG
    J Mol Biol; 2010 Jan; 395(2):361-74. PubMed ID: 19852970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs.
    Seki K; Galindo JL; Karim AS; Jewett MC
    ACS Chem Biol; 2023 Jun; 18(6):1324-1334. PubMed ID: 37257197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorporation of non-canonical amino acids into proteins in yeast.
    Wiltschi B
    Fungal Genet Biol; 2016 Apr; 89():137-156. PubMed ID: 26868890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1.
    Schmied WH; Elsässer SJ; Uttamapinant C; Chin JW
    J Am Chem Soc; 2014 Nov; 136(44):15577-83. PubMed ID: 25350841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on aminoacyl tRNA synthetases and transfer RNA in living Xenopus laevis oocytes.
    Gatica M; Solari A; Arancibia M; Allende JE
    Arch Biol Med Exp; 1979 Oct; 12(3):427-31. PubMed ID: 261727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.