These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35776326)

  • 61. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells.
    Meineke B; Heimgärtner J; Eirich J; Landreh M; Elsässer SJ
    Cell Rep; 2020 Jun; 31(12):107811. PubMed ID: 32579937
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Increased gene translation stringency in mammalian cells by nonsense suppression at multiple permissive sites with a single noncanonical amino acid.
    Kadunc L; Svetličič M; Forstnerič V; Hafner Bratkovič I; Jerala R
    FEBS Lett; 2020 Aug; 594(15):2452-2461. PubMed ID: 32401336
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pyrrolysine Amber Stop-Codon Suppression: Development and Applications.
    Brabham R; Fascione MA
    Chembiochem; 2017 Oct; 18(20):1973-1983. PubMed ID: 28758366
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in
    Galindo Casas M; Stargardt P; Mairhofer J; Wiltschi B
    ACS Synth Biol; 2020 Nov; 9(11):3052-3066. PubMed ID: 33150786
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 67. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs.
    Neumann H; Slusarczyk AL; Chin JW
    J Am Chem Soc; 2010 Feb; 132(7):2142-4. PubMed ID: 20121121
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Site-specific labeling of proteins with NMR-active unnatural amino acids.
    Jones DH; Cellitti SE; Hao X; Zhang Q; Jahnz M; Summerer D; Schultz PG; Uno T; Geierstanger BH
    J Biomol NMR; 2010 Jan; 46(1):89-100. PubMed ID: 19669620
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Encoding Noncanonical Amino Acids into Phage Displayed Proteins.
    Díaz-Perlas C; Escobar-Rosales M; Morgan CW; Oller-Salvia B
    Methods Mol Biol; 2023; 2676():117-129. PubMed ID: 37277628
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs.
    Gubbens J; Kim SJ; Yang Z; Johnson AE; Skach WR
    RNA; 2010 Aug; 16(8):1660-72. PubMed ID: 20581130
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plasmid Curing and Exchange Using a Novel Counter-Selectable Marker Based on Unnatural Amino Acid Incorporation at a Sense Codon.
    Kato Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768910
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.
    Gan Q; Fan C
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3047-3052. PubMed ID: 27919800
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media.
    Venditti V; Fawzi NL; Clore GM
    J Biomol NMR; 2012 Mar; 52(3):191-5. PubMed ID: 22350951
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Site-specific incorporation of a fluorescent terphenyl unnatural amino acid.
    Lampkowski JS; Uthappa DM; Young DD
    Bioorg Med Chem Lett; 2015 Nov; 25(22):5277-80. PubMed ID: 26421994
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Selection and validation of orthogonal tRNA/synthetase pairs for the encoding of unnatural amino acids across kingdoms.
    Galles GD; Infield DT; Mehl RA; Ahern CA
    Methods Enzymol; 2021; 654():3-18. PubMed ID: 34120719
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system.
    Chemla Y; Ozer E; Schlesinger O; Noireaux V; Alfonta L
    Biotechnol Bioeng; 2015 Aug; 112(8):1663-72. PubMed ID: 25753985
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tetracycline-regulated suppression of amber codons in mammalian cells.
    Park HJ; RajBhandary UL
    Mol Cell Biol; 1998 Aug; 18(8):4418-25. PubMed ID: 9671451
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Combined Cell-Free Protein Synthesis and Fluorescence-Based Approach to Investigate GPCR Binding Properties.
    Zemella A; Richter T; Thoring L; Kubick S
    Methods Mol Biol; 2019; 1947():57-77. PubMed ID: 30969411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.