These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35776352)

  • 1. Superresolution Imaging of Cytoskeletal Networks in Fixed Brain Tissue.
    Hicks AI; Zhou S; Yang J; Prager-Khoutorsky M
    Methods Mol Biol; 2022; 2515():171-191. PubMed ID: 35776352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structured illumination superresolution imaging of the cytoskeleton.
    Engel U
    Methods Cell Biol; 2014; 123():315-33. PubMed ID: 24974035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widely accessible method for superresolution fluorescence imaging of living systems.
    Dedecker P; Mo GC; Dertinger T; Zhang J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10909-14. PubMed ID: 22711840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution.
    Rego EH; Shao L; Macklin JJ; Winoto L; Johansson GA; Kamps-Hughes N; Davidson MW; Gustafsson MG
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):E135-43. PubMed ID: 22160683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen.
    Sivaguru M; Urban MA; Fried G; Wesseln CJ; Mander L; Punyasena SW
    Microsc Res Tech; 2018 Feb; 81(2):101-114. PubMed ID: 27476493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeing more with structured illumination microscopy.
    Fiolka R
    Methods Cell Biol; 2014; 123():295-313. PubMed ID: 24974034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence microscopy of actin- and microtubule-associated septins in mammalian cells.
    Spiliotis ET; Karasmanis EP; Dolat L
    Methods Cell Biol; 2016; 136():243-68. PubMed ID: 27473913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Answers to fundamental questions in superresolution microscopy.
    Heintzmann R
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20210105. PubMed ID: 33896198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superresolution fluorescence microscopy for 3D reconstruction of thick samples.
    Park S; Kang W; Kwon YD; Shim J; Kim S; Kaang BK; Hohng S
    Mol Brain; 2018 Mar; 11(1):17. PubMed ID: 29544505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting microtubule networks from superresolution single-molecule localization microscopy data.
    Zhang Z; Nishimura Y; Kanchanawong P
    Mol Biol Cell; 2017 Jan; 28(2):333-345. PubMed ID: 27852898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-Resolution Live Cell Imaging of Subcellular Structures.
    Ranjan R; Chen X
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins.
    Vavrdová T; Šamajová O; Křenek P; Ovečka M; Floková P; Šnaurová R; Šamaj J; Komis G
    Plant Methods; 2019; 15():22. PubMed ID: 30899319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging of Transcription and Replication in the Bacterial Chromosome with Multicolor Three-Dimensional Superresolution Structured Illumination Microscopy.
    Martin CM; Cagliero C; Sun Z; Chen D; Jin DJ
    Methods Mol Biol; 2018; 1837():117-129. PubMed ID: 30109608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM.
    Bachmann M; Fiederling F; Bastmeyer M
    J Microsc; 2016 Jun; 262(3):306-15. PubMed ID: 26694787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superresolution imaging with standard fluorescent probes.
    Millis BA; Burnette DT; Lippincott-Schwartz J; Kachar B
    Curr Protoc Cell Biol; 2013 Sep; 60():21.8.1-21.8.17. PubMed ID: 24510788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superresolution Fluorescence Microscopy of Platelet Subcellular Structures as a Potential Tumor Liquid Biopsy.
    Xu P; Deng H; Hong Z; Zhong S; Chen F; Wang L; Wang Z; Mei Y; Luo Z; He Z; Li H; Gan C; Zhang H; Ma Y; Han Z; Zhang YH
    Small Methods; 2023 Oct; 7(10):e2300445. PubMed ID: 37349902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.
    Zhang X; Zhang M; Li D; He W; Peng J; Betzig E; Xu P
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10364-9. PubMed ID: 27562163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification.
    Katoh Y; Chiba S; Nakayama K
    Mol Biol Cell; 2020 Sep; 31(20):2195-2206. PubMed ID: 32726175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.