BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35776394)

  • 1. Host genetics associated with gut microbiota and methane emission in cattle.
    Mahala S; Kala A; Kumar A
    Mol Biol Rep; 2022 Aug; 49(8):8153-8161. PubMed ID: 35776394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows.
    Difford GF; Plichta DR; Løvendahl P; Lassen J; Noel SJ; Højberg O; Wright AG; Zhu Z; Kristensen L; Nielsen HB; Guldbrandtsen B; Sahana G
    PLoS Genet; 2018 Oct; 14(10):e1007580. PubMed ID: 30312316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Diving into the cow hologenome to reduce methane emissions and increase sustainability.
    Gonzalez-Recio O; Scrobota N; López-Paredes J; Saborío-Montero A; Fernández A; López de Maturana E; Villanueva B; Goiri I; Atxaerandio R; García-Rodríguez A
    Animal; 2023 Jun; 17 Suppl 2():100780. PubMed ID: 37032282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows.
    Zhang Q; Difford G; Sahana G; Løvendahl P; Lassen J; Lund MS; Guldbrandtsen B; Janss L
    ISME J; 2020 Aug; 14(8):2019-2033. PubMed ID: 32366970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions.
    Knapp JR; Laur GL; Vadas PA; Weiss WP; Tricarico JM
    J Dairy Sci; 2014; 97(6):3231-61. PubMed ID: 24746124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle.
    López-García A; Saborío-Montero A; Gutiérrez-Rivas M; Atxaerandio R; Goiri I; García-Rodríguez A; Jiménez-Montero JA; González C; Tamames J; Puente-Sánchez F; Serrano M; Carrasco R; Óvilo C; González-Recio O
    Gigascience; 2022 Jan; 11():. PubMed ID: 35077540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies.
    Asselstine V; Lam S; Miglior F; Brito LF; Sweett H; Guan L; Waters SM; Plastow G; Cánovas A
    J Anim Sci; 2021 Oct; 99(10):. PubMed ID: 34586400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.
    Roehe R; Dewhurst RJ; Duthie CA; Rooke JA; McKain N; Ross DW; Hyslop JJ; Waterhouse A; Freeman TC; Watson M; Wallace RJ
    PLoS Genet; 2016 Feb; 12(2):e1005846. PubMed ID: 26891056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants.
    Pickering NK; Oddy VH; Basarab J; Cammack K; Hayes B; Hegarty RS; Lassen J; McEwan JC; Miller S; Pinares-Patiño CS; de Haas Y
    Animal; 2015 Sep; 9(9):1431-40. PubMed ID: 26055577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions.
    Negussie E; de Haas Y; Dehareng F; Dewhurst RJ; Dijkstra J; Gengler N; Morgavi DP; Soyeurt H; van Gastelen S; Yan T; Biscarini F
    J Dairy Sci; 2017 Apr; 100(4):2433-2453. PubMed ID: 28161178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the genetic basis of methane emission in dairy cattle: a comprehensive exploration and breeding approach to lower methane emissions.
    Worku D
    Anim Biotechnol; 2024 Nov; 35(1):2362677. PubMed ID: 38860914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions.
    Martínez-Álvaro M; Mattock J; Auffret M; Weng Z; Duthie CA; Dewhurst RJ; Cleveland MA; Watson M; Roehe R
    Microbiome; 2022 Oct; 10(1):166. PubMed ID: 36199148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heritable Bovine Rumen Bacteria Are Phylogenetically Related and Correlated with the Cow's Capacity To Harvest Energy from Its Feed.
    Sasson G; Kruger Ben-Shabat S; Seroussi E; Doron-Faigenboim A; Shterzer N; Yaacoby S; Berg Miller ME; White BA; Halperin E; Mizrahi I
    mBio; 2017 Aug; 8(4):. PubMed ID: 28811339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enteric methane emission factors, total emissions and intensities from Germany's livestock in the late 19th century: A comparison with the today's emission rates and intensities.
    Kuhla B; Viereck G
    Sci Total Environ; 2022 Nov; 848():157754. PubMed ID: 35926614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Methane Production from Ruminants.
    Hill J; McSweeney C; Wright AG; Bishop-Hurley G; Kalantar-Zadeh K
    Trends Biotechnol; 2016 Jan; 34(1):26-35. PubMed ID: 26603286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production.
    Cunha CS; Marcondes MI; Veloso CM; Mantovani HC; Pereira LGR; Tomich TR; Dill-McFarland KA; Suen G
    J Sci Food Agric; 2019 Jan; 99(1):210-218. PubMed ID: 29851082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.
    Donoghue KA; Bird-Gardiner T; Arthur PF; Herd RM; Hegarty RF
    J Anim Sci; 2016 Apr; 94(4):1438-45. PubMed ID: 27136003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.