BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35776394)

  • 21. Selective breeding as a mitigation tool for methane emissions from dairy cattle.
    de Haas Y; Veerkamp RF; de Jong G; Aldridge MN
    Animal; 2021 Dec; 15 Suppl 1():100294. PubMed ID: 34246599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dimensional reduction approach to modulate the core ruminal microbiome associated with methane emissions via selective breeding.
    Saborío-Montero A; López-García A; Gutiérrez-Rivas M; Atxaerandio R; Goiri I; García-Rodriguez A; Jiménez-Montero JA; González C; Tamames J; Puente-Sánchez F; Varona L; Serrano M; Ovilo C; González-Recio O
    J Dairy Sci; 2021 Jul; 104(7):8135-8151. PubMed ID: 33896632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural equation models to disentangle the biological relationship between microbiota and complex traits: Methane production in dairy cattle as a case of study.
    Saborío-Montero A; Gutiérrez-Rivas M; García-Rodríguez A; Atxaerandio R; Goiri I; López de Maturana E; Jiménez-Montero JA; Alenda R; González-Recio O
    J Anim Breed Genet; 2020 Jan; 137(1):36-48. PubMed ID: 31617268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bovine host genome acts on rumen microbiome function linked to methane emissions.
    Martínez-Álvaro M; Auffret MD; Duthie CA; Dewhurst RJ; Cleveland MA; Watson M; Roehe R
    Commun Biol; 2022 Apr; 5(1):350. PubMed ID: 35414107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion.
    Martin C; Ferlay A; Mosoni P; Rochette Y; Chilliard Y; Doreau M
    J Dairy Sci; 2016 May; 99(5):3445-3456. PubMed ID: 26947299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids.
    Bittante G; Cecchinato A; Schiavon S
    J Dairy Sci; 2018 Feb; 101(2):1752-1766. PubMed ID: 29224867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing.
    Ross EM; Moate PJ; Marett L; Cocks BG; Hayes BJ
    J Dairy Sci; 2013 Sep; 96(9):6030-46. PubMed ID: 23871375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic parameters for methane emission traits in Australian dairy cows.
    Richardson CM; Nguyen TTT; Abdelsayed M; Moate PJ; Williams SRO; Chud TCS; Schenkel FS; Goddard ME; van den Berg I; Cocks BG; Marett LC; Wales WJ; Pryce JE
    J Dairy Sci; 2021 Jan; 104(1):539-549. PubMed ID: 33131823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ; Zhang XM; Smith ML; Kung L; Vyas D; McGinn SM; Kindermann M; Wang M; Tan ZL; Beauchemin KA
    Anim Microbiome; 2022 May; 4(1):35. PubMed ID: 35642048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.
    Haas Yd; Windig JJ; Calus MP; Dijkstra J; Haan Md; Bannink A; Veerkamp RF
    J Dairy Sci; 2011 Dec; 94(12):6122-34. PubMed ID: 22118100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle.
    Manzanilla-Pech CI; De Haas Y; Hayes BJ; Veerkamp RF; Khansefid M; Donoghue KA; Arthur PF; Pryce JE
    J Anim Sci; 2016 Oct; 94(10):4151-4166. PubMed ID: 27898855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM; Medrano RF; Wang M; Beauchemin KA; Ma ZY; Wang R; Wen JN; Lukuyu BA; Tan ZL; He JH
    J Anim Sci; 2019 Dec; 97(12):4999-5008. PubMed ID: 31740932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host Genome-Metagenome Analyses Using Combinatorial Network Methods Reveal Key Metagenomic and Host Genetic Features for Methane Emission and Feed Efficiency in Cattle.
    Cardinale S; Kadarmideen HN
    Front Genet; 2022; 13():795717. PubMed ID: 35281842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response.
    Manzanilla-Pech CIV; L Vendahl P; Mansan Gordo D; Difford GF; Pryce JE; Schenkel F; Wegmann S; Miglior F; Chud TC; Moate PJ; Williams SRO; Richardson CM; Stothard P; Lassen J
    J Dairy Sci; 2021 Aug; 104(8):8983-9001. PubMed ID: 34001361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data.
    Jalil Sarghale A; Moradi Shahrebabak M; Moradi Shahrebabak H; Nejati Javaremi A; Saatchi M; Khansefid M; Miar Y
    BMC Genet; 2020 Nov; 21(1):129. PubMed ID: 33228565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The rumen microbial metagenome associated with high methane production in cattle.
    Wallace RJ; Rooke JA; McKain N; Duthie CA; Hyslop JJ; Ross DW; Waterhouse A; Watson M; Roehe R
    BMC Genomics; 2015 Oct; 16():839. PubMed ID: 26494241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Could propionate formation be used to reduce enteric methane emission in ruminants?
    Wang K; Xiong B; Zhao X
    Sci Total Environ; 2023 Jan; 855():158867. PubMed ID: 36122712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracy of methane emissions predicted from milk mid-infrared spectra and measured by laser methane detectors in Brown Swiss dairy cows.
    Denninger TM; Schwarm A; Dohme-Meier F; Münger A; Bapst B; Wegmann S; Grandl F; Vanlierde A; Sorg D; Ortmann S; Clauss M; Kreuzer M
    J Dairy Sci; 2020 Feb; 103(2):2024-2039. PubMed ID: 31864736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle.
    Løvendahl P; Difford GF; Li B; Chagunda MGG; Huhtanen P; Lidauer MH; Lassen J; Lund P
    Animal; 2018 Dec; 12(s2):s336-s349. PubMed ID: 30255826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of effects of dairy selection indexes on methane emissions.
    Zhang X; Amer PR; Jenkins GM; Sise JA; Santos B; Quinton C
    J Dairy Sci; 2019 Dec; 102(12):11153-11168. PubMed ID: 31587912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.