These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35776575)

  • 1. Ultra-broadband long-wave-infrared pulse production using a chirped-pulse difference-frequency generation.
    Huang H; Xiao X; Burger M; Nees J; Jovanovic I
    Opt Lett; 2022 Jul; 47(13):3159-3162. PubMed ID: 35776575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping.
    Yin Y; Chew A; Ren X; Li J; Wang Y; Wu Y; Chang Z
    Sci Rep; 2017 Apr; 8():45794. PubMed ID: 28367966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soliton-based pump-seed synchronization for few-cycle OPCPA.
    Teisset C; Ishii N; Fuji T; Metzger T; Köhler S; Holzwarth R; Baltuska A; Zheltikov A; Krausz F
    Opt Express; 2005 Aug; 13(17):6550-7. PubMed ID: 19498670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses.
    Zhang Q; Takahashi EJ; Mücke OD; Lu P; Midorikawa K
    Opt Express; 2011 Apr; 19(8):7190-212. PubMed ID: 21503032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz.
    Hrisafov S; Pupeikis J; Chevreuil PA; Brunner F; Phillips CR; Gallmann L; Keller U
    Opt Express; 2020 Dec; 28(26):40145-40154. PubMed ID: 33379546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of few-cycle infrared pulses from a degenerate dual-pump OPCPA.
    Hong Z; Zhang Q; Lan P; Lu P
    Opt Express; 2014 Mar; 22(5):5544-57. PubMed ID: 24663895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of octave-spanning mid-infrared pulses from cascaded second-order nonlinear processes in a single crystal.
    Yin Y; Ren X; Chew A; Li J; Wang Y; Zhuang F; Wu Y; Chang Z
    Sci Rep; 2017 Sep; 7(1):11097. PubMed ID: 28894279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier.
    Alismail A; Wang H; Brons J; Fattahi H
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28745636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-to-idler energy conversion from 1.9 to 2.3 µm by transient stimulated Raman chirped-pulse amplification.
    Petrulenas A; Mackonis P; Rodin AM
    Opt Lett; 2023 Apr; 48(7):1598-1601. PubMed ID: 37221719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-amplifier-pumped, 1-MHz, 1-µJ, 2.1-µm, femtosecond OPA with chirped-pulse DFG front-end.
    Liu Y; Krogen P; Hong KH; Cao Q; Keathley P; Kärtner FX
    Opt Express; 2019 Mar; 27(6):9144-9154. PubMed ID: 31052723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding a second AgGaS
    Harmon W; Robben K; Cheatum CM
    Opt Lett; 2023 Sep; 48(18):4797-4800. PubMed ID: 37707905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-repetition-rate optical parametric chirped-pulse amplifier producing 1-microJ, sub-100-fs pulses in the mid-infrared.
    Erny C; Heese C; Haag M; Gallmann L; Keller U
    Opt Express; 2009 Feb; 17(3):1340-5. PubMed ID: 19188962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-wave-infrared pulse production at 11 µm via difference-frequency generation driven by femtosecond mid-infrared all-fluoride fiber laser.
    Cui Y; Huang H; Bai Y; Du W; Chen M; Zhou B; Jovanovic I; Galvanauskas A
    Opt Lett; 2023 Apr; 48(7):1890-1893. PubMed ID: 37221792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz.
    Rotermund F; Yoon C; Petrov V; Noack F; Kurimura S; Yu NE; Kitamura K
    Opt Express; 2004 Dec; 12(26):6421-7. PubMed ID: 19488291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirped-pulse-amplification seed source through direct phase modulation.
    Xin R; Zuegel JD
    Opt Express; 2018 Aug; 26(16):21332-21345. PubMed ID: 30119436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.
    Wnuk P; Stepanenko Y; Radzewicz C
    Opt Express; 2010 Apr; 18(8):7911-6. PubMed ID: 20588633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA.
    Heese C; Phillips CR; Mayer BW; Gallmann L; Fejer MM; Keller U
    Opt Express; 2012 Nov; 20(24):26888-94. PubMed ID: 23187542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification.
    Witte S; Zinkstok RT; Wolf AL; Hogervorst W; Ubachs W; Eikema KS
    Opt Express; 2006 Sep; 14(18):8168-77. PubMed ID: 19529189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers.
    Jovanovic I; Comaskey BJ; Ebbers CA; Bonner RA; Pennington DM; Morse EC
    Appl Opt; 2002 May; 41(15):2923-9. PubMed ID: 12027180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air.
    Fuji T; Suzuki T
    Opt Lett; 2007 Nov; 32(22):3330-2. PubMed ID: 18026297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.