These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35776815)

  • 41. Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay.
    Cao Z; Xiao Q; Huang R; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):208-217. PubMed ID: 29300697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robust Neurooptimal Control for a Robot via Adaptive Dynamic Programming.
    Kong L; He W; Yang C; Sun C
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2584-2594. PubMed ID: 32941154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Actor-critic learning based coordinated control for a dual-arm robot with prescribed performance and unknown backlash-like hysteresis.
    Ouyang Y; Sun C; Dong L
    ISA Trans; 2022 Jul; 126():1-13. PubMed ID: 34446282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remote path-following control for a holonomic Mecanum-wheeled robot in a resource-efficient networked control system.
    Carbonell R; Cuenca Á; Salt J; Aranda-Escolástico E; Casanova V
    ISA Trans; 2024 Aug; 151():377-390. PubMed ID: 38834423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.
    Li C; Lowe R; Ziemke T
    Front Neurorobot; 2014; 8():23. PubMed ID: 25324773
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics modeling and path following controller of tractor-trailer-wheeled robots considering wheels slip.
    Babaei Robat A; Arezoo K; Alipour K; Tarvirdizadeh B
    ISA Trans; 2024 May; 148():45-63. PubMed ID: 38480087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal Tracking Control of a Nonlinear Multiagent System Using Q-Learning via Event-Triggered Reinforcement Learning.
    Wang Z; Wang X; Tang Y; Liu Y; Hu J
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Realizing asynchronous finite-time robust tracking control of switched flight vehicles by using nonfragile deep reinforcement learning.
    Cheng H; Song R; Li H; Wei W; Zheng B; Fang Y
    Front Neurosci; 2023; 17():1329576. PubMed ID: 38188035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Navigation Simulation of a Mecanum Wheel Mobile Robot Based on an Improved A* Algorithm in Unity3D.
    Li Y; Dai S; Shi Y; Zhao L; Ding M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reinforcement Learning-Based Optimal Tracking Control of an Unknown Unmanned Surface Vehicle.
    Wang N; Gao Y; Zhao H; Ahn CK
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):3034-3045. PubMed ID: 32745008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fixed-time disturbance observer-based nearly optimal control for reusable launch vehicle with input constraints.
    Zhang C; Zhang G; Dong Q
    ISA Trans; 2022 Mar; 122():182-197. PubMed ID: 33962796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot.
    Zhang H; Li B; Xiao B; Yang Y; Ling J
    ISA Trans; 2022 Nov; 130():553-564. PubMed ID: 35489816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust forward\backward control of wheeled mobile robots.
    Keymasi Khalaji A; Jalalnezhad M
    ISA Trans; 2021 Sep; 115():32-45. PubMed ID: 33454057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
    Lin CK
    IEEE Trans Syst Man Cybern B Cybern; 2005 Apr; 35(2):197-207. PubMed ID: 15828650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances.
    Lu Q; Chen J; Wang Q; Zhang D; Sun M; Su CY
    ISA Trans; 2022 Oct; 129(Pt A):273-286. PubMed ID: 35039151
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptive tracking control of two-wheeled mobile robots under Denial-of-Service attacks.
    Han Z; Long J; Wang W; Wang L
    ISA Trans; 2023 Oct; 141():365-376. PubMed ID: 37455187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tracking control of wheeled mobile robots via intermittent control.
    He X; Han X; Wei T; Li X
    Math Biosci Eng; 2024 Feb; 21(3):3774-3783. PubMed ID: 38549306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Analysis of Trajectory Control of Non-holonomic Mobile Robots Based on Internet of Things Target Image Enhancement Technology and Backpropagation Neural Network.
    Zhao L; Wang G; Fan X; Li Y
    Front Neurorobot; 2021; 15():634340. PubMed ID: 33828475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design, Modeling, and Control of a New Multi-Motion Mobile Robot Based on Spoked Mecanum Wheels.
    Leng J; Mou H; Tang J; Li Q; Zhang J
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37218769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.