BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35777040)

  • 1. Changes in tibial nerve stiffness during ankle dorsiflexion according to in-vivo analysis with shear wave elastography.
    Kawanishi K; Nariyama Y; Anegawa K; Tsutsumi M; Kudo S
    Medicine (Baltimore); 2022 Jul; 101(26):e29840. PubMed ID: 35777040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibial nerve dynamics during ankle dorsiflexion: The relationship between stiffness and excursion of the tibial nerve.
    Anegawa K; Kawanishi K; Nakamura M; Izumi M; Tsutsumi M; Kudo S
    J Biomech; 2023 Jun; 155():111646. PubMed ID: 37245388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.
    Chino K; Takahashi H
    Eur J Appl Physiol; 2016 Apr; 116(4):823-30. PubMed ID: 26874517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear wave elastography of tibial nerve in patients with diabetic peripheral neuropathy-A cross-sectional study.
    Pradhan DR; Saxena S; Kant R; Kumar M; Saran S
    Skeletal Radiol; 2024 Mar; 53(3):547-554. PubMed ID: 37698625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of passive muscle stiffness by shear wave elastography in healthy individuals of different ages.
    Liu X; Yu HK; Sheng SY; Liang SM; Lu H; Chen RY; Pan M; Wen ZB
    Eur Radiol; 2021 May; 31(5):3187-3194. PubMed ID: 33052467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial variation in mechanical properties along the sciatic and tibial nerves: An ultrasound shear wave elastography study.
    Andrade RJ; Freitas SR; Hug F; Coppieters MW; Sierra-Silvestre E; Nordez A
    J Biomech; 2022 May; 136():111075. PubMed ID: 35390647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive assessment of sciatic nerve stiffness during human ankle motion using ultrasound shear wave elastography.
    Andrade RJ; Nordez A; Hug F; Ates F; Coppieters MW; Pezarat-Correia P; Freitas SR
    J Biomech; 2016 Feb; 49(3):326-31. PubMed ID: 26725218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human plantar fascial dimensions and shear wave velocity change in vivo as a function of ankle and metatarsophalangeal joint positions.
    Shiotani H; Maruyama N; Kurumisawa K; Yamagishi T; Kawakami Y
    J Appl Physiol (1985); 2021 Feb; 130(2):390-399. PubMed ID: 33242300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the relationships between joint stiffness, modeled muscle stiffness, and shear wave velocity.
    Vigotsky AD; Rouse EJ; Lee SSM
    J Appl Physiol (1985); 2020 Sep; 129(3):483-491. PubMed ID: 32644909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography.
    Chino K; Takahashi H
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1230-5. PubMed ID: 26296832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of Gastrocnemius Muscle Stiffness With Passive Ankle Joint Stiffness and Sex-Related Difference in the Joint Stiffness.
    Chino K; Takahashi H
    J Appl Biomech; 2018 Jun; 34(3):169-174. PubMed ID: 29139316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy.
    Lee SS; Gaebler-Spira D; Zhang LQ; Rymer WZ; Steele KM
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():20-8. PubMed ID: 26490641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of muscle co-contraction using supersonic shear wave imaging.
    Raiteri BJ; Hug F; Cresswell AG; Lichtwark GA
    J Biomech; 2016 Feb; 49(3):493-5. PubMed ID: 26776929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Passive Muscle Stiffness in Diagnosis and Assessment of Disease Progression in Duchenne Muscular Dystrophy.
    Yu HK; Liu X; Pan M; Chen JW; Liu C; Wu Y; Li ZB; Wang HY
    Ultrasound Med Biol; 2022 Mar; 48(3):414-421. PubMed ID: 34893358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associations between Range of Motion and Tissue Stiffness in Young and Older People.
    Hirata K; Yamadera R; Akagi R
    Med Sci Sports Exerc; 2020 Oct; 52(10):2179-2188. PubMed ID: 32348099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Measurement of Sciatic Nerve Stiffness in Patients With Chronic Low Back Related Leg Pain Using Shear Wave Elastography.
    Neto T; Freitas SR; Andrade RJ; Vaz JR; Mendes B; Firmino T; Bruno PM; Nordez A; Oliveira R
    J Ultrasound Med; 2019 Jan; 38(1):157-164. PubMed ID: 29732595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application value of conventional ultrasound and real-time shear wave elastography in patients with type 2 diabetic polyneuropathy.
    Chen R; Wang XL; Xue WL; Sun JW; Dong XY; Jiang ZP; Wu H; Ma R; Zhou XL
    Eur J Radiol; 2020 May; 126():108965. PubMed ID: 32268245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement consistency of dynamic stretching muscle stiffness evaluated using shear wave elastography: comparison among different stretched levels and ROI sizes.
    Liu X; Yu HK; Sheng SY; Liang SM; Lu H; Gu LX; Fu P; Pan M
    Med Ultrason; 2021 Feb; 23(1):55-61. PubMed ID: 33621274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reliability of shear elastic modulus measurement of the ankle plantar flexion muscles is higher at dorsiflexed position of the ankle.
    Saeki J; Ikezoe T; Nakamura M; Nishishita S; Ichihashi N
    J Foot Ankle Res; 2017; 10():18. PubMed ID: 28428826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between medial gastrocnemius muscle-tendon unit architecture and ankle dorsiflexion range of motion with and without consideration of slack angle.
    Hirata K; Kanehisa H; Miyamoto N
    PLoS One; 2021; 16(3):e0248125. PubMed ID: 33667276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.