These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35777073)

  • 1. Small Carbohydrate Derivatives as Potent Antibiofilm Agents.
    Singh K; Kulkarni SS
    J Med Chem; 2022 Jul; 65(13):8525-8549. PubMed ID: 35777073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens.
    Sukmarini L; Atikana A; Hertiani T
    J Nat Med; 2024 Jan; 78(1):1-20. PubMed ID: 37930514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa.
    van Tilburg Bernardes E; Charron-Mazenod L; Reading DJ; Reckseidler-Zenteno SL; Lewenza S
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria.
    Khan F; Pham DTN; Oloketuyi SF; Manivasagan P; Oh J; Kim YM
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110627. PubMed ID: 31732391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antipathogenic Compounds That Are Effective at Very Low Concentrations and Have Both Antibiofilm and Antivirulence Effects against Pseudomonas aeruginosa.
    Hwang HJ; Choi H; Hong S; Moon HR; Lee JH
    Microbiol Spectr; 2021 Oct; 9(2):e0024921. PubMed ID: 34494853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides.
    Haney EF; Trimble MJ; Cheng JT; Vallé Q; Hancock REW
    Biomolecules; 2018 May; 8(2):. PubMed ID: 29883434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides.
    Zou Y; Lu K; Lin Y; Wu Y; Wang Y; Li L; Huang C; Zhang Y; Brash JL; Chen H; Yu Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45191-45200. PubMed ID: 34519474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eucalyptol inhibits biofilm formation of
    Vijayakumar K; Manigandan V; Jeyapragash D; Bharathidasan V; Anandharaj B; Sathya M
    J Med Microbiol; 2020 Nov; 69(11):1308-1318. PubMed ID: 32930658
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic Determinants of
    Griewisch KF; Pierce JG; Elfenbein JR
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action.
    Roy R; Tiwari M; Donelli G; Tiwari V
    Virulence; 2018 Jan; 9(1):522-554. PubMed ID: 28362216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of algal active compounds as potent antibiofilm agent.
    Nag M; Lahiri D; Dey A; Sarkar T; Joshi S; Ray RR
    J Basic Microbiol; 2022 Sep; 62(9):1098-1109. PubMed ID: 34939676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiofilm Peptides: Potential as Broad-Spectrum Agents.
    Pletzer D; Hancock RE
    J Bacteriol; 2016 Oct; 198(19):2572-8. PubMed ID: 27068589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus.
    Glatthardt T; Campos JCM; Chamon RC; de Sá Coimbra TF; Rocha GA; de Melo MAF; Parente TE; Lobo LA; Antunes LCM; Dos Santos KRN; Ferreira RBR
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01.
    Solihin J; Waturangi DE; Purwadaria T
    BMC Microbiol; 2021 Aug; 21(1):232. PubMed ID: 34425755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilms: Microbial Shelters Against Antibiotics.
    Hathroubi S; Mekni MA; Domenico P; Nguyen D; Jacques M
    Microb Drug Resist; 2017 Mar; 23(2):147-156. PubMed ID: 27214143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.
    Zacchino SA; Butassi E; Cordisco E; Svetaz LA
    Phytomedicine; 2017 Dec; 37():14-26. PubMed ID: 29174600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiofilm activity of lactoferrin-derived synthetic peptides against
    Ramamourthy G; Vogel HJ
    Biochem Cell Biol; 2021 Feb; 99(1):138-148. PubMed ID: 32871093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty Acids as Antibiofilm and Antivirulence Agents.
    Kumar P; Lee JH; Beyenal H; Lee J
    Trends Microbiol; 2020 Sep; 28(9):753-768. PubMed ID: 32359781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies.
    Singh A; Amod A; Pandey P; Bose P; Pingali MS; Shivalkar S; Varadwaj PK; Sahoo AK; Samanta SK
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35105823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitooligosaccharides as Antibacterial, Antibiofilm, Antihemolytic and Anti-Virulence Agent against Staphylococcus aureus.
    Khan F; Lee JW; Pham DTN; Kim YM
    Curr Pharm Biotechnol; 2019; 20(14):1223-1233. PubMed ID: 31475895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.