These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35777152)
1. Machine learning predictions of chlorophyll-a in the Han river basin, Korea. Kim KM; Ahn JH J Environ Manage; 2022 Sep; 318():115636. PubMed ID: 35777152 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression. Yuan X; Wang S; Fan F; Dong Y; Li Y; Lin W; Zhou C Environ Res; 2022 Dec; 215(Pt 3):114380. PubMed ID: 36162468 [TBL] [Abstract][Full Text] [Related]
3. Multiple remotely sensed datasets and machine learning models to predict chlorophyll-a concentration in the Nakdong River, South Korea. Lee B; Im JK; Han JW; Kang T; Kim W; Kim M; Lee S Environ Sci Pollut Res Int; 2024 Oct; 31(48):58505-58526. PubMed ID: 39316212 [TBL] [Abstract][Full Text] [Related]
4. Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea. Ly QV; Nguyen XC; Lê NC; Truong TD; Hoang TT; Park TJ; Maqbool T; Pyo J; Cho KH; Lee KS; Hur J Sci Total Environ; 2021 Nov; 797():149040. PubMed ID: 34311376 [TBL] [Abstract][Full Text] [Related]
5. Algae development in rivers with artificially constructed weirs: Dominant influence of discharge over temperature. Kim H; Lee G; Lee CG; Park SJ J Environ Manage; 2024 Mar; 355():120551. PubMed ID: 38460331 [TBL] [Abstract][Full Text] [Related]
6. Relevant factors in the eutrophication of the Uruguay River and the Río Negro. Beretta-Blanco A; Carrasco-Letelier L Sci Total Environ; 2021 Mar; 761():143299. PubMed ID: 33229089 [TBL] [Abstract][Full Text] [Related]
7. Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake. Li X; Sha J; Wang ZL Environ Sci Pollut Res Int; 2018 Jul; 25(20):19488-19498. PubMed ID: 29730758 [TBL] [Abstract][Full Text] [Related]
8. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Yi HS; Park S; An KG; Kwak KC Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30248912 [TBL] [Abstract][Full Text] [Related]
9. Water quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basin. Sakaa B; Elbeltagi A; Boudibi S; Chaffaï H; Islam ARMT; Kulimushi LC; Choudhari P; Hani A; Brouziyne Y; Wong YJ Environ Sci Pollut Res Int; 2022 Jul; 29(32):48491-48508. PubMed ID: 35192167 [TBL] [Abstract][Full Text] [Related]
10. Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea. Mamun M; An KG Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444013 [TBL] [Abstract][Full Text] [Related]
11. Predicting water quality from geospatial lake, catchment, and buffer zone characteristics in temperate lowland lakes. Martinsen KT; Sand-Jensen K Sci Total Environ; 2022 Dec; 851(Pt 1):158090. PubMed ID: 35987226 [TBL] [Abstract][Full Text] [Related]
12. [Comparison of Relationship Between Conduction and Algal Bloom in Pengxi River and Modao River in Three Gorges Reservoir]. Jiang W; Zhou C; Ji DB; Liu DF; Ren YS; Douglas H; Xie DT; Zhang L Huan Jing Ke Xue; 2017 Jun; 38(6):2326-2335. PubMed ID: 29965350 [TBL] [Abstract][Full Text] [Related]
13. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers]. Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies. Chen S; Zhang Z; Lin J; Huang J PLoS One; 2022; 17(7):e0271458. PubMed ID: 35830456 [TBL] [Abstract][Full Text] [Related]
15. Sestonic Chlorophyll- Shows Hierarchical Structure and Thresholds with Nutrients across the Red River Basin, USA. Haggard BE; Scott JT; Longing SD J Environ Qual; 2013; 42(2):437-45. PubMed ID: 23673836 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China. Yang J; Zheng Y; Zhang W; Zhou Y; Zhang Y J Environ Manage; 2024 Jul; 364():121386. PubMed ID: 38865920 [TBL] [Abstract][Full Text] [Related]
17. Impacts of storm events on chlorophyll-a variations and controlling factors for algal bloom in a river receiving reclaimed water. Liao A; Han D; Song X; Yang S J Environ Manage; 2021 Nov; 297():113376. PubMed ID: 34325374 [TBL] [Abstract][Full Text] [Related]
18. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
19. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Bowes MJ; Gozzard E; Johnson AC; Scarlett PM; Roberts C; Read DS; Armstrong LK; Harman SA; Wickham HD Sci Total Environ; 2012 Jun; 426():45-55. PubMed ID: 22503676 [TBL] [Abstract][Full Text] [Related]
20. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery. Du C; Li Y; Wang Q; Liu G; Zheng Z; Mu M; Li Y Environ Sci Pollut Res Int; 2017 Dec; 24(36):28079-28101. PubMed ID: 28994019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]