These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35777320)

  • 1. Development and characterization of chlorophyll-amended montmorillonite clays for the adsorption and detoxification of benzene.
    Rivenbark KJ; Wang M; Lilly K; Tamamis P; Phillips TD
    Water Res; 2022 Aug; 221():118788. PubMed ID: 35777320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Edible Montmorillonite Clays for the Adsorption and Detoxification of Microcystin.
    Wang M; Rivenbark K; Gong J; Wright FA; Phillips TD
    ACS Appl Bio Mater; 2021 Sep; 4(9):7254-7265. PubMed ID: 34746680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays.
    Wang M; Rivenbark KJ; Phillips TD
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11417-11430. PubMed ID: 36097303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Montmorillonite clay-based sorbents decrease the bioavailability of per- and polyfluoroalkyl substances (PFAS) from soil and their translocation to plants.
    Hearon SE; Orr AA; Moyer H; Wang M; Tamamis P; Phillips TD
    Environ Res; 2022 Apr; 205():112433. PubMed ID: 34875259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays.
    Wang M; Orr AA; Jakubowski JM; Bird KE; Casey CM; Hearon SE; Tamamis P; Phillips TD
    Water Res; 2021 Jan; 188():116534. PubMed ID: 33125992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green-Engineered Barrier Creams with Montmorillonite-Chlorophyll Clays as Adsorbents for Benzene, Toluene, and Xylene.
    Wang M; Phillips TD
    Separations; 2023 Apr; 10(4):. PubMed ID: 37251084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Adsorption of Dieldrin by Parent and Processed Montmorillonite Clays.
    Hearon SE; Wang M; Phillips TD
    Environ Toxicol Chem; 2020 Mar; 39(3):517-525. PubMed ID: 31756776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.
    Wang M; Maki CR; Deng Y; Tian Y; Phillips TD
    Chem Res Toxicol; 2017 Sep; 30(9):1694-1701. PubMed ID: 28768106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong adsorption of Polychlorinated Biphenyls by processed montmorillonite clays: Potential applications as toxin enterosorbents during disasters and floods.
    Wang M; Safe S; Hearon SE; Phillips TD
    Environ Pollut; 2019 Dec; 255(Pt 1):113210. PubMed ID: 31542671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris.
    Wang M; Chen Z; Rusyn I; Phillips TD
    J Hazard Mater; 2021 Apr; 408():124425. PubMed ID: 33162237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.
    Jaynes WF; Zartman RE
    Toxins (Basel); 2011 Jun; 3(6):551-65. PubMed ID: 22069725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of 2,4,6-trichlorophenol in model humic acid-clay systems.
    Wang XP; Shan XQ; Luo L; Zhang SZ; Wen B
    J Agric Food Chem; 2005 May; 53(9):3548-55. PubMed ID: 15853400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of glyphosate and aminomethylphosphonic acid sorption onto montmorillonite clays in soil and their translocation to genetically modified corn.
    Wang M; Rivenbark KJ; Phillips TD
    J Environ Sci (China); 2024 Jan; 135():669-680. PubMed ID: 37778837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of broad-acting clays for the tight adsorption of benzo[a]pyrene and aldicarb.
    Wang M; Hearon SE; Johnson NM; Phillips TD
    Appl Clay Sci; 2019 Feb; 168():196-202. PubMed ID: 31435120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite.
    Liu YL; Walker HW; Lenhart JJ
    Chemosphere; 2019 Apr; 220():696-705. PubMed ID: 30611067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Influence of Clay Montmorillonite Content on the Aqueous Uptake of Lead and Zinc.
    Mu'azu ND
    Water Environ Res; 2018 Sep; 90(9):771-782. PubMed ID: 29891021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase.
    Cai P; Huang QY; Zhang XW
    Environ Sci Technol; 2006 May; 40(9):2971-6. PubMed ID: 16719099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of enterosorbents that can be added to food and water to reduce toxin exposures during disasters.
    Wang M; Hearon SE; Phillips TD
    J Environ Sci Health B; 2019; 54(6):514-524. PubMed ID: 31014207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.