These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35777484)

  • 41. Effect of the siliconization method on particle generation in a monoclonal antibody formulation in pre-filled syringes.
    Gerhardt A; Nguyen BH; Lewus R; Carpenter JF; Randolph TW
    J Pharm Sci; 2015 May; 104(5):1601-9. PubMed ID: 25740412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shape Characterization of Subvisible Particles Using Dynamic Imaging Analysis.
    Mathaes R; Manning MC; Winter G; Engert J; Wilson GA
    J Pharm Sci; 2020 Jan; 109(1):375-379. PubMed ID: 31476311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles--Differential Centrifugation and FACS.
    Boll B; Folzer E; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    Pharm Res; 2015 Dec; 32(12):3952-64. PubMed ID: 26195006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations.
    Mach H; Bhambhani A; Meyer BK; Burek S; Davis H; Blue JT; Evans RK
    J Pharm Sci; 2011 May; 100(5):1671-8. PubMed ID: 21374606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of mammalian cell counts, cell size and cell health using the Moxi Z mini automated cell counter.
    Dittami GM; Sethi M; Rabbitt RD; Ayliffe HE
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Collaborative Study for Analysis of Subvisible Particles Using Flow Imaging and Light Obscuration: Experiences in Japanese Biopharmaceutical Consortium.
    Kiyoshi M; Shibata H; Harazono A; Torisu T; Maruno T; Akimaru M; Asano Y; Hirokawa M; Ikemoto K; Itakura Y; Iwura T; Kikitsu A; Kumagai T; Mori N; Murase H; Nishimura H; Oda A; Ogawa T; Ojima T; Okabe S; Saito S; Saitoh S; Suetomo H; Takegami K; Takeuchi M; Yasukawa H; Uchiyama S; Ishii-Watabe A
    J Pharm Sci; 2019 Feb; 108(2):832-841. PubMed ID: 30121316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global Analysis of Aggregation Profiles of Three Kinds of Immuno-Oncology mAb Drug Products Using Flow Cytometry.
    Hu Z; Mi W; Ye C; Zhao Y; Cavicchi RE; Hang H; Li H
    Anal Chem; 2023 Mar; 95(10):4768-4775. PubMed ID: 36862732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Particle Characterization for a Protein Drug Product Stored in Pre-Filled Syringes Using Micro-Flow Imaging, Archimedes, and Quartz Crystal Microbalance with Dissipation.
    Zheng S; Puri A; Li J; Jaiswal A; Adams M
    AAPS J; 2017 Jan; 19(1):110-116. PubMed ID: 27620008
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of particles in protein solutions: reaching the limits of current technologies.
    Demeule B; Messick S; Shire SJ; Liu J
    AAPS J; 2010 Dec; 12(4):708-15. PubMed ID: 20953747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phagocytosis-coupled flow cytometry for detection and size discrimination of anionic polystyrene particles.
    Mutzke E; Chomyshyn E; Nguyen KC; Blahoianu M; Tayabali AF
    Anal Biochem; 2015 Aug; 483():40-6. PubMed ID: 25957125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis.
    Ferris MM; Stoffel CL; Maurer TT; Rowlen KL
    Anal Biochem; 2002 May; 304(2):249-56. PubMed ID: 12009703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
    Kalonia C; Kumru OS; Prajapati I; Mathaes R; Engert J; Zhou S; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):536-47. PubMed ID: 25302696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Random Forest Approach for Counting Silicone Oil Droplets and Protein Particles in Antibody Formulations Using Flow Microscopy.
    Saggu M; Patel AR; Koulis T
    Pharm Res; 2017 Feb; 34(2):479-491. PubMed ID: 27995522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM).
    Panchal J; Kotarek J; Marszal E; Topp EM
    AAPS J; 2014 May; 16(3):440-51. PubMed ID: 24570341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
    Ripple DC; Hu Z
    Pharm Res; 2016 Mar; 33(3):653-72. PubMed ID: 26555667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay.
    Pamme N; Koyama R; Manz A
    Lab Chip; 2003 Aug; 3(3):187-92. PubMed ID: 15100772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variable Threshold Method for Determining the Boundaries of Imaged Subvisible Particles.
    Cavicchi RE; Collett C; Telikepalli S; Hu Z; Carrier M; Ripple DC
    J Pharm Sci; 2017 Jun; 106(6):1499-1507. PubMed ID: 28209364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.
    Gruia F; Parupudi A; Polozova A
    PDA J Pharm Sci Technol; 2015; 69(3):427-39. PubMed ID: 26048748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks.
    Umar M; Krause N; Hawe A; Simmel F; Menzen T
    Eur J Pharm Biopharm; 2021 Dec; 169():97-102. PubMed ID: 34597817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.