These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35777997)

  • 1. Study of a piezoelectric energy harvester in the form of vortex oscillation for fixed disturbance fluid type.
    He L; Zhou J; Han Y; Liu R; Tian X; Liu L
    Rev Sci Instrum; 2022 Jun; 93(6):064705. PubMed ID: 35777997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration.
    Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever.
    Xin M; Jiang X; Xu C; Yang J; Lu C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling.
    He L; Yu G; Han Y; Liu L; Hu D; Cheng G
    Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction.
    Su WJ; Wang ZS
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional Piezoelectric Energy Harvester.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31489888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study on the Underwater Energy Harvester with Two PVDFs Installed on the FTEH and CTEH at the End of the Support.
    Lee J; An J; Lee C; Jeong Y; Seo HS; Cho Y
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillating U-Shaped Body for Underwater Piezoelectric Energy Harvester Power Optimization.
    Aramendia I; Saenz-Aguirre A; Boyano A; Fernandez-Gamiz U; Zulueta E
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Array Magnetic Coupling Piezoelectric and Electromagnetic Energy Harvester for Rotary Excitation.
    Chen Q; Li C; Lv M
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on a rotary piezoelectric wind energy harvester with bilateral excitation.
    He L; Zheng X; Li W; Gu X; Han Y; Cheng G
    Rev Sci Instrum; 2023 Feb; 94(2):025004. PubMed ID: 36859045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism.
    Li N; Xia H; Yang C; Luo T; Qin L
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester.
    Su WJ; Tseng CH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.