These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35777997)

  • 21. Improved Design via Simulation of Micro-Modified PVDF and its Copolymer Energy Harvester with High Electrical Outputs.
    Liu Y; Huang Z; Liu C
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear Dynamic Analysis of Bistable Piezoelectric Energy Harvester with a New-Type Dynamic Amplifier.
    Man D; Xu G; Xu H; Xu D; Tang L
    Comput Intell Neurosci; 2022; 2022():7155628. PubMed ID: 35789613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device.
    Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Pavement Piezoelectric Energy Harvester for Small Input Displacements.
    Yin B; Wei J; Jiang X; Liu Y
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Piezoelectric energy extraction from a cylinder undergoing vortex-induced vibration using internal resonance.
    Joy A; Joshi V; Narendran K; Ghoshal R
    Sci Rep; 2023 Apr; 13(1):6924. PubMed ID: 37117292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of Polypyrrole Electrode into Piezoelectric PVDF Energy Harvester with Improved Adhesion and Over-Oxidation Resistance.
    Baik K; Park S; Yun C; Park CH
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester.
    Lee K; Jeong Y; Lee CH; Lee J; Seo HS; Cho Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester.
    Zhou Z; Zhang H; Qin W; Zhu P; Du W
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Funnel Type PVDF Underwater Energy Harvester with Spiral Structure Mounted on the Harvester Support.
    Lee J; Ahn J; Jin H; Lee CH; Jeong Y; Lee K; Seo HS; Cho Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flutter Phenomenon in Flow Driven Energy Harvester-A Unified Theoretical Model for "Stiff" and "Flexible" Materials.
    Chen Y; Mu X; Wang T; Ren W; Yang Y; Wang ZL; Sun C; Gu AY
    Sci Rep; 2016 Oct; 6():35180. PubMed ID: 27739484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam.
    Wang H; Li B; Liu Y; Zhao W
    Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.