These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35778081)

  • 21. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products.
    Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G
    Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substitution effects in the
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2018 Aug; 56(8):767-774. PubMed ID: 29504638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the accuracy factors and computational cost of the GIAO-DFT calculation of
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):1015-1021. PubMed ID: 28600816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient method for generating property-energy consistent basis sets. New pecJ-
    Rusakov YY; Rusakova IL
    Phys Chem Chem Phys; 2021 Jul; 23(27):14925-14939. PubMed ID: 34223856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum chemical calculations of
    Sojka M; Nečas M; Toušek J
    J Mol Model; 2019 Oct; 25(11):329. PubMed ID: 31656972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DFT-GIAO calculations of 19F NMR chemical shifts for perfluoro compounds.
    Fukaya H; Ono T
    J Comput Chem; 2004 Jan; 25(1):51-60. PubMed ID: 14634993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals.
    Aquino F; Govind N; Autschbach J
    J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automated framework for NMR chemical shift calculations of small organic molecules.
    Yesiltepe Y; Nuñez JR; Colby SM; Thomas DG; Borkum MI; Reardon PN; Washton NM; Metz TO; Teeguarden JG; Govind N; Renslow RS
    J Cheminform; 2018 Oct; 10(1):52. PubMed ID: 30367288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate Prediction of Nuclear Magnetic Resonance Parameters via the XYG3 Type of Doubly Hybrid Density Functionals.
    Yan W; Xu X
    J Chem Theory Comput; 2022 May; 18(5):2931-2946. PubMed ID: 35467852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional theory study of (13)C NMR chemical shift of chlorinated compounds.
    Li S; Zhou W; Gao H; Zhou Z
    Magn Reson Chem; 2012 Feb; 50(2):106-13. PubMed ID: 22354788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DFT Calculations of
    Venianakis T; Oikonomaki C; Siskos MG; Primikyri A; Gerothanassis IP
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance tensors in uracil: calculation of 13C, 15N, 17O NMR chemical shifts, 17O and 14N electric field gradients and measurement of 13C and 15N chemical shifts.
    Amini SK; Shaghaghi H; Bain AD; Chabok A; Tafazzoli M
    Solid State Nucl Magn Reson; 2010; 37(1-2):13-20. PubMed ID: 20071154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hartree-Fock, Møller-Plesset calculations and dynamic NMR study of 3,3-dimethoxy-1-(imidazolidin-2-ylidene)propan-2-one.
    Hassanzadeh A; Loghmani-Khouzani H; Sadeghi MM; Ghorbani MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1236-43. PubMed ID: 17336140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular recognition in molecular tweezers systems: quantum-chemical calculation of NMR chemical shifts.
    Zienau J; Kussmann J; Koziol F; Ochsenfeld C
    Phys Chem Chem Phys; 2007 Aug; 9(32):4552-62. PubMed ID: 17690781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 3. Conformational Sampling and Explicit Solvents Model.
    Exner TE; Frank A; Onila I; Möller HM
    J Chem Theory Comput; 2012 Nov; 8(11):4818-27. PubMed ID: 26605634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete prediction of the 1H NMR spectrum of organic molecules by DFT calculations of chemical shifts and spin-spin coupling constants.
    Bagno A
    Chemistry; 2001 Apr; 7(8):1652-61. PubMed ID: 11349906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational NMR of carbohydrates: 1. Glucopyranoses.
    Fedorov SV; Krivdin LB
    Magn Reson Chem; 2023 Mar; 61(3):162-168. PubMed ID: 36226671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refinement of labile hydrogen positions based on DFT calculations of
    Siskos MG; Choudhary MI; Gerothanassis IP
    Org Biomol Chem; 2017 May; 15(21):4655-4666. PubMed ID: 28513720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.