These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35778125)

  • 1. Early detection of lean blowout using recurrence network for varying degrees of premixedness.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2022 Jun; 32(6):063105. PubMed ID: 35778125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor.
    De S; Bhattacharya A; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2020 Apr; 30(4):043115. PubMed ID: 32357653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lean blowout detection using topological data analysis.
    Bhattacharya A; Mondal S; De S; Mukhopadhyay A; Sen S
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38170473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame blowout: Transition to an absorbing phase.
    Unni VR; Chaudhuri S; Sujith RI
    Chaos; 2018 Nov; 28(11):113121. PubMed ID: 30501208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.
    Gotoda H; Amano M; Miyano T; Ikawa T; Maki K; Tachibana S
    Chaos; 2012 Dec; 22(4):043128. PubMed ID: 23278063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner.
    De Giorgi MG; Sciolti A; Campilongo S; Ficarella A
    Data Brief; 2016 Mar; 6():189-93. PubMed ID: 26862557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Idealized gas turbine combustor for performance research and validation of large eddy simulations.
    Williams TC; Schefer RW; Oefelein JC; Shaddix CR
    Rev Sci Instrum; 2007 Mar; 78(3):035114. PubMed ID: 17411224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imprints of log-periodicity in thermoacoustic systems close to lean blowout.
    Banerjee A; Pavithran I; Sujith RI
    Phys Rev E; 2023 Feb; 107(2-1):024219. PubMed ID: 36932584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and Emission Characteristics of a Stratified Hydrogen-Enriched Oxy-Methane Flame on a Multihole Burner: An Experimental Study.
    Abdelhafez A
    ACS Omega; 2024 Apr; 9(17):18882-18892. PubMed ID: 38708198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
    Gotoda H; Nikimoto H; Miyano T; Tachibana S
    Chaos; 2011 Mar; 21(1):013124. PubMed ID: 21456838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2021 Mar; 31(3):033117. PubMed ID: 33810714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation.
    Wang S; Liu X; Wang G; Xu L; Li L; Liu Y; Huang Z; Qi F
    Appl Opt; 2019 Apr; 58(10):C68-C78. PubMed ID: 31045033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor.
    Gövert S; Mira D; Kok JBW; Vázquez M; Houzeaux G
    Flow Turbul Combust; 2018; 100(2):503-534. PubMed ID: 30069142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route to chaos for combustion instability in ducted laminar premixed flames.
    Kabiraj L; Saurabh A; Wahi P; Sujith RI
    Chaos; 2012 Jun; 22(2):023129. PubMed ID: 22757536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos in an imperfectly premixed model combustor.
    Kabiraj L; Saurabh A; Karimi N; Sailor A; Mastorakos E; Dowling AP; Paschereit CO
    Chaos; 2015 Feb; 25(2):023101. PubMed ID: 25725637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing a global transition to thermoacoustic instability by targeting local dynamics.
    George NB; Raghunathan M; Unni VR; Sujith RI; Kurths J; Surovyatkina E
    Sci Rep; 2022 Jun; 12(1):9305. PubMed ID: 35661119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter.
    Suresha S; Sujith RI; Emerson B; Lieuwen T
    Phys Rev E; 2016 Oct; 94(4-1):042206. PubMed ID: 27841488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.