These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35778135)

  • 21. Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction.
    Li X; Zhu Q; Zhao C; Duan X; Zhao B; Zhang X; Ma H; Sun J; Lin W
    Nat Commun; 2024 Mar; 15(1):2506. PubMed ID: 38509083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating wavepacket propagation with machine learning.
    Singh K; Lee KH; Peláez D; Bande A
    J Comput Chem; 2024 Jun; ():. PubMed ID: 39031712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model-size reduction for reservoir computing by concatenating internal states through time.
    Sakemi Y; Morino K; Leleu T; Aihara K
    Sci Rep; 2020 Dec; 10(1):21794. PubMed ID: 33311595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transfer-RLS method and transfer-FORCE learning for simple and fast training of reservoir computing models.
    Tamura H; Tanaka G
    Neural Netw; 2021 Nov; 143():550-563. PubMed ID: 34304003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems.
    Panahi S; Lai YC
    Chaos; 2024 May; 34(5):. PubMed ID: 38717410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting unstable periodic orbits based only on time series: When adaptive delayed feedback control meets reservoir computing.
    Zhu Q; Ma H; Lin W
    Chaos; 2019 Sep; 29(9):093125. PubMed ID: 31575157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation.
    Chen P; Liu R; Aihara K; Chen L
    Nat Commun; 2020 Sep; 11(1):4568. PubMed ID: 32917894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Algorithms for the electronic and vibrational properties of nanocrystals.
    Chelikowsky JR; Zayak AT; Chan TL; Tiago ML; Zhou Y; Saad Y
    J Phys Condens Matter; 2009 Feb; 21(6):064207. PubMed ID: 21715910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine-learning potential of a single pendulum.
    Mandal S; Sinha S; Shrimali MD
    Phys Rev E; 2022 May; 105(5-1):054203. PubMed ID: 35706182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning Hamiltonian dynamics with reservoir computing.
    Zhang H; Fan H; Wang L; Wang X
    Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning.
    Köglmayr D; Räth C
    Sci Rep; 2024 Jan; 14(1):507. PubMed ID: 38177246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamical Phase Transitions in Quantum Reservoir Computing.
    Martínez-Peña R; Giorgi GL; Nokkala J; Soriano MC; Zambrini R
    Phys Rev Lett; 2021 Sep; 127(10):100502. PubMed ID: 34533342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine-learning inference of fluid variables from data using reservoir computing.
    Nakai K; Saiki Y
    Phys Rev E; 2018 Aug; 98(2-1):023111. PubMed ID: 30253537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian machine learning for quantum molecular dynamics.
    Krems RV
    Phys Chem Chem Phys; 2019 Jun; 21(25):13392-13410. PubMed ID: 31165115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution to Speeding-Up the Solving of Nonlinear Ordinary Differential Equations on Parallel/Multi-Core Platforms for Sensing Systems.
    Tavakkoli V; Mohsenzadegan K; Chedjou JC; Kyamakya K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33126552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reservoir computing as digital twins for nonlinear dynamical systems.
    Kong LW; Weng Y; Glaz B; Haile M; Lai YC
    Chaos; 2023 Mar; 33(3):033111. PubMed ID: 37003826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Memristor models for machine learning.
    Carbajal JP; Dambre J; Hermans M; Schrauwen B
    Neural Comput; 2015 Mar; 27(3):725-47. PubMed ID: 25602769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.