These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35778135)

  • 41. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine learning algorithms for predicting the amplitude of chaotic laser pulses.
    Amil P; Soriano MC; Masoller C
    Chaos; 2019 Nov; 29(11):113111. PubMed ID: 31779344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantum-mechanical tier model for phonon-driven vibrational relaxation dynamics of adsorbates at surfaces.
    Bouakline F; Fischer EW; Saalfrank P
    J Chem Phys; 2019 Jun; 150(24):244105. PubMed ID: 31255089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Quantum Dynamics: A Quantum Computing Perspective.
    Ollitrault PJ; Miessen A; Tavernelli I
    Acc Chem Res; 2021 Dec; 54(23):4229-4238. PubMed ID: 34787398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.
    Enel P; Procyk E; Quilodran R; Dominey PF
    PLoS Comput Biol; 2016 Jun; 12(6):e1004967. PubMed ID: 27286251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Convergence study of a Schrödinger-equation algorithm and structure-factor determination from the wavefunction.
    Bethanis K; Tzamalis P; Hountas A; Tsoucaris G
    Acta Crystallogr A; 2008 Jul; 64(Pt 4):450-8. PubMed ID: 18560161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On solving initial value problems for partial differential equations in maple.
    Thota S
    BMC Res Notes; 2021 Aug; 14(1):307. PubMed ID: 34376237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A time-reversible integrator for the time-dependent Schrödinger equation on an adaptive grid.
    Choi S; Vaníček J
    J Chem Phys; 2019 Dec; 151(23):234102. PubMed ID: 31864241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.
    Plehn T; May V
    J Chem Phys; 2017 Jan; 146(3):034107. PubMed ID: 28109221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On Improving The Computing Capacity of Dynamical Systems.
    Athanasiou V; Konkoli Z
    Sci Rep; 2020 Jun; 10(1):9191. PubMed ID: 32513916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multidimensional quantum trajectories: applications of the derivative propagation method.
    Trahan CJ; Wyatt RE; Poirier B
    J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solving the Schrödinger Equation in the Configuration Space with Generative Machine Learning.
    Herzog B; Casier B; Lebègue S; Rocca D
    J Chem Theory Comput; 2023 May; 19(9):2484-2490. PubMed ID: 37043718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-stochastic matrix Schrödinger equation for open systems.
    Joubert-Doriol L; Ryabinkin IG; Izmaylov AF
    J Chem Phys; 2014 Dec; 141(23):234112. PubMed ID: 25527924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solving the Schrödinger equation using program synthesis.
    Habershon S
    J Chem Phys; 2021 Oct; 155(15):154102. PubMed ID: 34686051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regularizing the MCTDH equations of motion through an optimal choice on-the-fly (i.e., spawning) of unoccupied single-particle functions.
    Mendive-Tapia D; Meyer HD
    J Chem Phys; 2020 Dec; 153(23):234114. PubMed ID: 33353345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.
    Doan NAK; Polifke W; Magri L
    Proc Math Phys Eng Sci; 2021 Sep; 477(2253):20210135. PubMed ID: 35153579
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D.
    Avila G; Carrington T
    J Chem Phys; 2011 Feb; 134(5):054126. PubMed ID: 21303111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity.
    Pyle R; Rosenbaum R
    Neural Comput; 2019 Jul; 31(7):1430-1461. PubMed ID: 31113300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.