These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35778136)
1. Large internal solitary waves on a weak shear. Derzho OG Chaos; 2022 Jun; 32(6):063130. PubMed ID: 35778136 [TBL] [Abstract][Full Text] [Related]
2. Large amplitude capillary-gravity solitary waves in a stratified fluid sandwiched between two deep homogeneous layers. Derzho OG Chaos; 2021 Jun; 31(6):063104. PubMed ID: 34241301 [TBL] [Abstract][Full Text] [Related]
3. Phase-modulated solitary waves controlled by a boundary condition at the bottom. Mukherjee A; Janaki MS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062903. PubMed ID: 25019847 [TBL] [Abstract][Full Text] [Related]
4. Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials. James G; Pelinovsky D Proc Math Phys Eng Sci; 2014 May; 470(2165):20130462. PubMed ID: 24808748 [TBL] [Abstract][Full Text] [Related]
5. Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation. Ankiewicz A; Bokaeeyan M; Akhmediev N Phys Rev E; 2019 May; 99(5-1):050201. PubMed ID: 31212487 [TBL] [Abstract][Full Text] [Related]
6. Complex Korteweg-de Vries equation: A deeper theory of shallow water waves. Crabb M; Akhmediev N Phys Rev E; 2021 Feb; 103(2-1):022216. PubMed ID: 33736119 [TBL] [Abstract][Full Text] [Related]
7. Soliton fractals in the Korteweg-de Vries equation. Zamora-Sillero E; Shapovalov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046612. PubMed ID: 17995132 [TBL] [Abstract][Full Text] [Related]
8. Collective coordinate framework to study solitary waves in stochastically perturbed Korteweg-de Vries equations. Cartwright M; Gottwald GA Phys Rev E; 2021 Aug; 104(2-1):024201. PubMed ID: 34525509 [TBL] [Abstract][Full Text] [Related]
9. On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. Abdel-Gawad HI; Osman M J Adv Res; 2015 Jul; 6(4):593-9. PubMed ID: 26199750 [TBL] [Abstract][Full Text] [Related]
10. Asymptotic solitons for a higher-order modified Korteweg-de Vries equation. Marchant TR Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046623. PubMed ID: 12443365 [TBL] [Abstract][Full Text] [Related]
12. Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion. Grimshaw R; Stepanyants Y; Alias A Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150416. PubMed ID: 26997887 [TBL] [Abstract][Full Text] [Related]
13. Undular bore theory for the Gardner equation. Kamchatnov AM; Kuo YH; Lin TC; Horng TL; Gou SC; Clift R; El GA; Grimshaw RH Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036605. PubMed ID: 23031043 [TBL] [Abstract][Full Text] [Related]
14. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg-de Vries equation. Ratliff DJ; Bridges TJ Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160456. PubMed ID: 28119546 [TBL] [Abstract][Full Text] [Related]
15. Dispersive shock wave interactions and asymptotics. Ablowitz MJ; Baldwin DE Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022906. PubMed ID: 23496590 [TBL] [Abstract][Full Text] [Related]
16. Finite time blow-up and breaking of solitary wind waves. Manna MA; Montalvo P; Kraenkel RA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013006. PubMed ID: 25122368 [TBL] [Abstract][Full Text] [Related]
17. Coupled solitons of intense high-frequency and low-frequency waves in Zakharov-type systems. Gromov E; Malomed B Chaos; 2016 Dec; 26(12):123118. PubMed ID: 28039972 [TBL] [Abstract][Full Text] [Related]
18. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Shen Y; Kevrekidis PG; Sen S; Hoffman A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797 [TBL] [Abstract][Full Text] [Related]
19. Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom. Compelli A; Ivanov R; Todorov M Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2111):. PubMed ID: 29229791 [TBL] [Abstract][Full Text] [Related]
20. Dispersion management for solitons in a Korteweg-de Vries system. Clarke S; Malomed BA; Grimshaw R Chaos; 2002 Mar; 12(1):8-15. PubMed ID: 12779527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]