These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35778140)

  • 21. Unstable eigenvectors and reduced amplitude spaces specifying limit cycles of coupled oscillators with simultaneously diagonalizable matrices: with applications from electric circuits to gene regulation.
    Mongkolsakulvong S; Frank TD
    Eur Phys J B; 2022; 95(9):156. PubMed ID: 36158851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robustness and fragility in coupled oscillator networks under targeted attacks.
    Yuan T; Aihara K; Tanaka G
    Phys Rev E; 2017 Jan; 95(1-1):012315. PubMed ID: 28208319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical regimes of four almost identical chemical oscillators coupled via pulse inhibitory coupling with time delay.
    Vanag VK; Smelov PS; Klinshov VV
    Phys Chem Chem Phys; 2016 Feb; 18(7):5509-20. PubMed ID: 26863079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nontrivial amplitude death in coupled parity-time-symmetric Liénard oscillators.
    Singh U; Raina A; Chandrasekar VK; Senthilkumar DV
    Phys Rev E; 2021 Nov; 104(5-1):054204. PubMed ID: 34942732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bursting near Bautin bifurcation in a neural network with delay coupling.
    Song Z; Xu J
    Int J Neural Syst; 2009 Oct; 19(5):359-73. PubMed ID: 19885964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple resonance in coupled Duffing oscillators and nonlinear normal modes.
    Martinez Duque RB; Vásquez Romero CE
    Phys Rev E; 2024 Apr; 109(4-1):044216. PubMed ID: 38755915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric Bonhoeffer-van der Pol oscillators near a codimension-two bifurcation point.
    Horikawa Y; Kitajima H
    Chaos; 2012 Sep; 22(3):033115. PubMed ID: 23020454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability and Bautin bifurcation of four-wheel-steering vehicle system with driver steering control.
    Miao P; Li D; Yue Y; Grebogi C
    Chaos; 2023 Aug; 33(8):. PubMed ID: 37549125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay of coupling and common noise at the transition to synchrony in oscillator populations.
    Pimenova AV; Goldobin DS; Rosenblum M; Pikovsky A
    Sci Rep; 2016 Dec; 6():38518. PubMed ID: 27922105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition from amplitude to oscillation death in a network of oscillators.
    Nandan M; Hens CR; Pal P; Dana SK
    Chaos; 2014 Dec; 24(4):043103. PubMed ID: 25554023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning coupling rate to control oscillation quenching in fractional-order coupled oscillators.
    Liu S; Sun Z; Zhao N
    Chaos; 2020 Oct; 30(10):103108. PubMed ID: 33138455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum.
    Starosvetsky Y; Ben-Meir Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062919. PubMed ID: 23848760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamical robustness of coupled heterogeneous oscillators.
    Tanaka G; Morino K; Daido H; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052906. PubMed ID: 25353860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robustness of coupled oscillator networks with heterogeneous natural frequencies.
    Yuan T; Tanaka G
    Chaos; 2017 Dec; 27(12):123105. PubMed ID: 29289041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.