These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35778151)

  • 1. Partial locking in phase-oscillator populations with heterogenous coupling.
    Xu C; Wu Y; Zheng Z; Tang L
    Chaos; 2022 Jun; 32(6):063106. PubMed ID: 35778151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation dynamics of phase oscillators with generic heterogeneous coupling.
    Xu C; Jin X; Wu Y
    Phys Rev E; 2023 Feb; 107(2-1):024206. PubMed ID: 36932595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-frequency-two-coupling model of coupled oscillators.
    Hong H; Martens EA
    Chaos; 2021 Aug; 31(8):083124. PubMed ID: 34470243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling.
    Xu C; Wang X; Zheng Z; Cai Z
    Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization transitions in phase oscillator populations with partial adaptive coupling.
    Chen Z; Zheng Z; Xu C
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38829794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram for the Winfree model of coupled nonlinear oscillators.
    Ariaratnam JT; Strogatz SH
    Phys Rev Lett; 2001 May; 86(19):4278-81. PubMed ID: 11328154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Structured Networks of Winfree Oscillators.
    Laing CR; Bläsche C; Means S
    Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise.
    Kostin VA; Munyaev VO; Osipov GV; Smirnov LA
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags.
    Choe CU; Kim RS; Ri JS
    Phys Rev E; 2017 Sep; 96(3-1):032224. PubMed ID: 29346960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of synchronization transitions in random networks of coupled oscillators.
    Um J; Hong H; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012810. PubMed ID: 24580284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance-induced synchronization in coupled phase oscillators with bimodal frequency distribution and periodic coupling.
    Li S; Wang X
    Phys Rev E; 2024 Aug; 110(2-1):024219. PubMed ID: 39295012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective phase response curves for heterogeneous coupled oscillators.
    Hannay KM; Booth V; Forger DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimera state on a spherical surface of nonlocally coupled oscillators with heterogeneous phase lags.
    Kim RS; Choe CU
    Chaos; 2019 Feb; 29(2):023101. PubMed ID: 30823720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay of coupling and common noise at the transition to synchrony in oscillator populations.
    Pimenova AV; Goldobin DS; Rosenblum M; Pikovsky A
    Sci Rep; 2016 Dec; 6():38518. PubMed ID: 27922105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal order parameter for synchrony in networks of limit cycle oscillators.
    Schröder M; Timme M; Witthaut D
    Chaos; 2017 Jul; 27(7):073119. PubMed ID: 28764398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.