These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3577817)

  • 1. Action potential fatigue in single skeletal muscle fibres of Xenopus.
    Lännergren J; Westerblad H
    Acta Physiol Scand; 1987 Mar; 129(3):311-8. PubMed ID: 3577817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force and membrane potential during and after fatiguing, intermittent tetanic stimulation of single Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1986 Nov; 128(3):369-78. PubMed ID: 3788615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force and membrane potential during and after fatiguing, continuous high-frequency stimulation of single Xenopus muscle fibres.
    Lännergren J; Westerblad H
    Acta Physiol Scand; 1986 Nov; 128(3):359-68. PubMed ID: 3788614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature and stimulation scheme on fatigue and recovery in Xenopus muscle fibres.
    Lännergren J; Westerblad H
    Acta Physiol Scand; 1988 May; 133(1):73-82. PubMed ID: 3227906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1988 May; 133(1):83-9. PubMed ID: 3227907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible increase in light scattering during recovery from fatigue in Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1990 Nov; 140(3):429-35. PubMed ID: 2082708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres.
    Kugelberg E; Lindegren B
    J Physiol; 1979 Mar; 288():285-300. PubMed ID: 224167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum tension and force-velocity properties of fatigued, single Xenopus muscle fibres studied by caffeine and high K+.
    Lännergren J; Westerblad H
    J Physiol; 1989 Feb; 409():473-90. PubMed ID: 2585298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of (+/-)-propranolol on excitation-contraction coupling in isolated soleus muscles of the rat.
    Ha TN; Fryer MW
    Br J Pharmacol; 1997 Oct; 122(3):463-8. PubMed ID: 9351502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological actions of mexiletine (Kö1173) on canine Purkinje fibres and ventricular muscle.
    Arita M; Goto M; Nagamoto Y; Saikawa T
    Br J Pharmacol; 1979 Sep; 67(1):143-52. PubMed ID: 497518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold sodium thiomalate improves membrane potential impaired by high-frequency stimulation.
    Aoki T; Oba T
    Can J Physiol Pharmacol; 2004 Apr; 82(4):262-8. PubMed ID: 15181464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of action of pentobarbital on the contractile system of isolated frog muscle fibres.
    Khan AR
    Acta Physiol Scand; 1980 Apr; 108(4):405-9. PubMed ID: 6968148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of amrinone on the electromechanical coupling in frog skeletal muscle fibres.
    Mörner SE; Månsson A
    Acta Physiol Scand; 1990 Jun; 139(2):289-95. PubMed ID: 2368618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and mechanical activities in the denervated semitendinosus muscle of the frog.
    López E
    Jpn J Physiol; 1978; 28(4):401-12. PubMed ID: 722989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle.
    Khan AR; Edman KA
    Acta Physiol Scand; 1979 Apr; 105(4):443-52. PubMed ID: 313138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.