These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35778196)

  • 1. Mesopelagic fish gas bladder elongation, as estimated from wideband acoustic backscattering measurements.
    Khodabandeloo B; Ona E; Pedersen G; Korneliussen R; Melle W; Klevjer T
    J Acoust Soc Am; 2022 Jun; 151(6):4073. PubMed ID: 35778196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating target strength and physical characteristics of gas-bearing mesopelagic fish from wideband in situ echoes using a viscous-elastic scattering model.
    Khodabandeloo B; Agersted MD; Klevjer T; Macaulay GJ; Melle W
    J Acoust Soc Am; 2021 Jan; 149(1):673. PubMed ID: 33514171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target Strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri).
    Sobradillo B; Boyra G; Martinez U; Carrera P; Peña M; Irigoien X
    Sci Rep; 2019 Nov; 9(1):17311. PubMed ID: 31754163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass.
    Dornan T; Fielding S; Saunders RA; Genner MJ
    Proc Biol Sci; 2019 May; 286(1903):20190353. PubMed ID: 31138069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target strengths of two abundant mesopelagic fish species.
    Scoulding B; Chu D; Ona E; Fernandes PG
    J Acoust Soc Am; 2015 Feb; 137(2):989-1000. PubMed ID: 25698030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency- and depth-dependent target strength measurements of individual mesopelagic scatterers.
    Bassett C; Lavery AC; Stanton TK; Cotter ED
    J Acoust Soc Am; 2020 Aug; 148(2):EL153. PubMed ID: 32873032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties.
    Dornan T; Fielding S; Saunders RA; Genner MJ
    Proc Biol Sci; 2022 Jan; 289(1967):20211781. PubMed ID: 35078354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target phase: an extra dimension for fish and plankton target identification.
    Barr R; Coombs RF
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1358-71. PubMed ID: 16240797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of broadband target spectra in the mesopelagic using physics-informed machine learning.
    Cotter E; Bassett C; Lavery A
    J Acoust Soc Am; 2021 Jun; 149(6):3889. PubMed ID: 34241451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-resonance scattering from arrays of artificial fish swimbladders.
    Nero RW; Feuillade C; Thompson CH; Love RH
    J Acoust Soc Am; 2007 Jan; 121(1):132-43. PubMed ID: 17297769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband backscattering from scyphozoan jellyfish.
    Kahn RE; Lavery AC; Govindarajan AF
    J Acoust Soc Am; 2023 May; 153(5):3075. PubMed ID: 37222723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an analytical approach to characterize the target strength of ancillary pelagic fish species.
    Palermino A; De Felice A; Canduci G; Biagiotti I; Costantini I; Centurelli M; Leonori I
    Sci Rep; 2023 Sep; 13(1):15182. PubMed ID: 37704690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic backscattering by Hawaiian lutjanid snappers. 1. Target strength and swimbladder characteristics.
    Benoit-Bird KJ; Au WW; Kelley CD
    J Acoust Soc Am; 2003 Nov; 114(5):2757-66. PubMed ID: 14650010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of mesopelagic organism abundance estimates using in situ target strength measurements and echo-counting techniques.
    Cotter E; Bassett C; Lavery A
    JASA Express Lett; 2021 Apr; 1(4):040801. PubMed ID: 36154197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy: converting from acoustic to biological resource units.
    Benoit-Bird KJ; Au WW
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2070-5. PubMed ID: 12051427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic.
    Peña M; Cabrera-Gámez J; Domínguez-Brito AC
    Mar Environ Res; 2020 Feb; 154():104842. PubMed ID: 32056700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The economic tradeoffs and ecological impacts associated with a potential mesopelagic fishery in the California Current.
    Dowd S; Chapman M; Koehn LE; Hoagland P
    Ecol Appl; 2022 Jun; 32(4):e2578. PubMed ID: 35191110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxonomical classification of reef fish with broadband backscattering models and machine learning approaches.
    Roa C; Pedersen G; Bollinger M; Taylor C; Boswell KM
    J Acoust Soc Am; 2022 Aug; 152(2):1020. PubMed ID: 36050156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband acoustic backscatter and high-resolution morphology of fish: measurement and modeling.
    Reeder DB; Jech JM; Stanton TK
    J Acoust Soc Am; 2004 Aug; 116(2):747-61. PubMed ID: 15376641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large mesopelagic fishes biomass and trophic efficiency in the open ocean.
    Irigoien X; Klevjer TA; Røstad A; Martinez U; Boyra G; Acuña JL; Bode A; Echevarria F; Gonzalez-Gordillo JI; Hernandez-Leon S; Agusti S; Aksnes DL; Duarte CM; Kaartvedt S
    Nat Commun; 2014; 5():3271. PubMed ID: 24509953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.