These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35778201)

  • 1. Numerical prediction of loudness metrics for N-waves and shaped sonic booms in kinematic turbulence.
    Carr AN; Lonzaga JB; Miller SAE
    J Acoust Soc Am; 2022 Jun; 151(6):3580. PubMed ID: 35778201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of classical and low booms through kinematic turbulence with uncertain parameters.
    Leconte R; Chassaing JC; Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2022 Jun; 151(6):4207. PubMed ID: 35778163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.
    Doebler WJ; Sparrow VW
    J Acoust Soc Am; 2017 Jun; 141(6):EL592. PubMed ID: 28679260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.
    Lipkens B
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):509-19. PubMed ID: 11837956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Summary of recent NASA studies of human response to sonic booms.
    Leatherwood JD; Sullivan BM; Shepherd KP; McCurdy DA; Brown SA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):586-98. PubMed ID: 11837964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric turbulence effects on shaped and unshaped sonic boom signatures.
    Stout TA; Sparrow VW
    J Acoust Soc Am; 2022 May; 151(5):3280. PubMed ID: 35649900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence.
    Stout TA; Sparrow VW; Blanc-Benon P
    J Acoust Soc Am; 2021 May; 149(5):3250. PubMed ID: 34241145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple scattering theory for modeling sonic booms in atmospheric turbulence.
    Lonzaga JB
    J Acoust Soc Am; 2023 Nov; 154(5):3078-3088. PubMed ID: 37962404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence.
    Lipkens B; Blackstock DT
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1301-9. PubMed ID: 9745733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the noise dose range of the NASA X-59 aircraft in supersonic cruise using PCBoom propagation simulations.
    Doebler WJ; Loubeau A
    JASA Express Lett; 2023 May; 3(5):. PubMed ID: 37249414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom.
    Marchiano R; Coulouvrat F; Grenon R
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1758-71. PubMed ID: 14587578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment.
    Averiyanov M; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2011 Dec; 130(6):3595-607. PubMed ID: 22225017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of anisoplanatic lucky look imaging and statistics through optical turbulence using numerical wave propagation.
    Rucci MA; Hardie RC; Martin RK
    Appl Opt; 2021 Sep; 60(25):G19-G29. PubMed ID: 34613191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence.
    Salze É; Yuldashev P; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2014 Aug; 136(2):556-66. PubMed ID: 25096090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subjective response of people to simulated sonic booms in their homes.
    McCurdy DA; Brown SA; Hilliard RD
    J Acoust Soc Am; 2004 Sep; 116(3):1573-84. PubMed ID: 15478423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.
    Piacsek AA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):520-9. PubMed ID: 11837957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subjective loudness of "minimized" sonic boom waveforms.
    Niedzwiecki A; Ribner HS
    J Acoust Soc Am; 1978 Dec; 64(6):1622-6. PubMed ID: 739097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence.
    Yu R; Lipatnikov AN
    Phys Rev E; 2017 Jun; 95(6-1):063101. PubMed ID: 28709298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.