These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35778204)

  • 21. Toward an estimation of the clarinet reed pulse from instrument performance.
    Smyth T; Abel JS
    J Acoust Soc Am; 2012 Jun; 131(6):4799-810. PubMed ID: 22712951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new classification of wind instruments: Orofacial considerations.
    Clemente M; Mendes J; Moreira A; Bernardes G; Van Twillert H; Ferreira A; Amarante JM
    J Oral Biol Craniofac Res; 2019; 9(3):268-276. PubMed ID: 31249774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pitch bending and glissandi on the clarinet: roles of the vocal tract and partial tone hole closure.
    Chen JM; Smith J; Wolfe J
    J Acoust Soc Am; 2009 Sep; 126(3):1511-20. PubMed ID: 19739764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longitudinal and Transversal Elasticity of Natural and Artificial Materials for Musical Instrument Reeds.
    Ukshini E; Dirckx JJJ
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting transient dynamics in a model of reed musical instrument with slowly time-varying control parameter.
    Bergeot B; Terrien S; Vergez C
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39042504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global numerical simulation of fluid-structure-acoustic interaction in a single-reed instrument.
    Yoshinaga T; Yokoyama H; Shoji T; Miki A; Iida A
    J Acoust Soc Am; 2021 Mar; 149(3):1623. PubMed ID: 33765813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulations of fluid-structure interactions in single-reed mouthpieces.
    da Silva AR; Scavone GP; van Walstijn M
    J Acoust Soc Am; 2007 Sep; 122(3):1798. PubMed ID: 17927439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aero-acoustics of silicone rubber lip reeds for alternative voice production in laryngectomees.
    van der Torn M; Mahieu HF; Festen JM
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2548-59. PubMed ID: 11757944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements.
    Dalmont JP; Gilbert J; Ollivier S
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2253-62. PubMed ID: 14587622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pressure-based transfer matrix method and measurement technique for studying resonances in flutes and other open-input resonators.
    Saenger KL
    J Acoust Soc Am; 2020 Apr; 147(4):2556. PubMed ID: 32359327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analytical prediction of the oscillation and extinction thresholds of a clarinet.
    Dalmont JP; Gilbert J; Kergomard J; Ollivier S
    J Acoust Soc Am; 2005 Nov; 118(5):3294-305. PubMed ID: 16334700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nature of the lip reed.
    Chen FC; Weinreich G
    J Acoust Soc Am; 1996 Feb; 99(2):1227-33. PubMed ID: 8609303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of pipe organ reed curvature on tone quality.
    Plitnik GR; Angster J
    J Acoust Soc Am; 2012 Nov; 132(5):3502-11. PubMed ID: 23145630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) I. experiment.
    Tarnopolsky AZ; Fletcher NH; Hollenberg LC; Lange BD; Smith J; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1194-204. PubMed ID: 16521780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Woodwind instrument design optimization based on impedance characteristics with geometric constraints.
    Ernoult A; Vergez C; Missoum S; Guillemain P; Jousserand M
    J Acoust Soc Am; 2020 Nov; 148(5):2864. PubMed ID: 33261417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of woodwind instrument toneholes with the finite element method.
    Lefebvre A; Scavone GP
    J Acoust Soc Am; 2012 Apr; 131(4):3153-63. PubMed ID: 22501087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational determination of transition times using the measured mouthpiece pressure from soprano and bass clarinet players.
    Coyle WL; Wong EY; Gabriel JD; Kaplan CN
    JASA Express Lett; 2021 May; 1(5):053201. PubMed ID: 36154113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasistatic nonlinear characteristics of double-reed instruments.
    Almeida A; Vergez C; Caussé R
    J Acoust Soc Am; 2007 Jan; 121(1):536-46. PubMed ID: 17297807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental study of the effects of the long chimney of a closed tonehole on the sound of a bassoon.
    Ernoult A; Grothe T
    J Acoust Soc Am; 2023 Feb; 153(2):1229. PubMed ID: 36859156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.