BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35778381)

  • 21. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction.
    Robert PA; Akbar R; Frank R; Pavlović M; Widrich M; Snapkov I; Slabodkin A; Chernigovskaya M; Scheffer L; Smorodina E; Rawat P; Mehta BB; Vu MH; Mathisen IF; Prósz A; Abram K; Olar A; Miho E; Haug DTT; Lund-Johansen F; Hochreiter S; Haff IH; Klambauer G; Sandve GK; Greiff V
    Nat Comput Sci; 2022 Dec; 2(12):845-865. PubMed ID: 38177393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide.
    Entzminger KC; Hyun JM; Pantazes RJ; Patterson-Orazem AC; Qerqez AN; Frye ZP; Hughes RA; Ellington AD; Lieberman RL; Maranas CD; Maynard JA
    Sci Rep; 2017 Aug; 7(1):10295. PubMed ID: 28860479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification.
    Jeliazkov JR; Sljoka A; Kuroda D; Tsuchimura N; Katoh N; Tsumoto K; Gray JJ
    Front Immunol; 2018; 9():413. PubMed ID: 29545810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin.
    Ho M; Kreitman RJ; Onda M; Pastan I
    J Biol Chem; 2005 Jan; 280(1):607-17. PubMed ID: 15491997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning methods for protein-protein binding affinity prediction in protein design.
    Guo Z; Yamaguchi R
    Front Bioinform; 2022; 2():1065703. PubMed ID: 36591334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity.
    Hoet RM; Cohen EH; Kent RB; Rookey K; Schoonbroodt S; Hogan S; Rem L; Frans N; Daukandt M; Pieters H; van Hegelsom R; Neer NC; Nastri HG; Rondon IJ; Leeds JA; Hufton SE; Huang L; Kashin I; Devlin M; Kuang G; Steukers M; Viswanathan M; Nixon AE; Sexton DJ; Hoogenboom HR; Ladner RC
    Nat Biotechnol; 2005 Mar; 23(3):344-8. PubMed ID: 15723048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Side chain requirements for affinity and specificity in D5, an HIV-1 antibody derived from the VH1-69 germline segment.
    Stewart A; Harrison JS; Regula LK; Lai JR
    BMC Biochem; 2013 Apr; 14():9. PubMed ID: 23566198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning.
    Irvine EB; Reddy ST
    J Immunol; 2024 Jan; 212(2):235-243. PubMed ID: 38166249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries.
    Li L; Gupta E; Spaeth J; Shing L; Jaimes R; Engelhart E; Lopez R; Caceres RS; Bepler T; Walsh ME
    Nat Commun; 2023 Jun; 14(1):3454. PubMed ID: 37308471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VH-VL orientation prediction for antibody humanization candidate selection: A case study.
    Bujotzek A; Lipsmeier F; Harris SF; Benz J; Kuglstatter A; Georges G
    MAbs; 2016; 8(2):288-305. PubMed ID: 26637054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features.
    Harmalkar A; Rao R; Richard Xie Y; Honer J; Deisting W; Anlahr J; Hoenig A; Czwikla J; Sienz-Widmann E; Rau D; Rice AJ; Riley TP; Li D; Catterall HB; Tinberg CE; Gray JJ; Wei KY
    MAbs; 2023; 15(1):2163584. PubMed ID: 36683173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel Evolution of Antibody Affinity and Thermal Stability for Optimal Biotherapeutic Development.
    Franklin E; Cunningham O; Fennell B
    Methods Mol Biol; 2018; 1827():457-477. PubMed ID: 30196511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving antibody binding affinity and specificity for therapeutic development.
    Bostrom J; Lee CV; Haber L; Fuh G
    Methods Mol Biol; 2009; 525():353-76, xiii. PubMed ID: 19252851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR.
    Simons JF; Lim YW; Carter KP; Wagner EK; Wayham N; Adler AS; Johnson DS
    MAbs; 2020; 12(1):1803646. PubMed ID: 32744131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-PD1 'SHR-1210' aberrantly targets pro-angiogenic receptors and this polyspecificity can be ablated by paratope refinement.
    Finlay WJJ; Coleman JE; Edwards JS; Johnson KS
    MAbs; 2019 Jan; 11(1):26-44. PubMed ID: 30541416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning.
    Mason DM; Friedensohn S; Weber CR; Jordi C; Wagner B; Meng SM; Ehling RA; Bonati L; Dahinden J; Gainza P; Correia BE; Reddy ST
    Nat Biomed Eng; 2021 Jun; 5(6):600-612. PubMed ID: 33859386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding.
    Akbar R; Robert PA; Pavlović M; Jeliazkov JR; Snapkov I; Slabodkin A; Weber CR; Scheffer L; Miho E; Haff IH; Haug DTT; Lund-Johansen F; Safonova Y; Sandve GK; Greiff V
    Cell Rep; 2021 Mar; 34(11):108856. PubMed ID: 33730590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis.
    Tiller KE; Chowdhury R; Li T; Ludwig SD; Sen S; Maranas CD; Tessier PM
    Front Immunol; 2017; 8():986. PubMed ID: 28928732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues.
    Wu H; Nie Y; Huse WD; Watkins JD
    J Mol Biol; 1999 Nov; 294(1):151-62. PubMed ID: 10556035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning to predict continuous protein properties from binary cell sorting data and map unseen sequence space.
    Case M; Smith M; Vinh J; Thurber G
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2311726121. PubMed ID: 38451939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.