These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35778609)
1. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. Takahashi S J Antibiot (Tokyo); 2022 Aug; 75(8):432-444. PubMed ID: 35778609 [TBL] [Abstract][Full Text] [Related]
2. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Panthee S; Kito N; Hayashi T; Shimizu T; Ishikawa J; Hamamoto H; Osada H; Takahashi S Sci Rep; 2020 Jun; 10(1):10230. PubMed ID: 32576869 [TBL] [Abstract][Full Text] [Related]
3. β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Panthee S; Takahashi S; Hayashi T; Shimizu T; Osada H Sci Rep; 2019 Apr; 9(1):5802. PubMed ID: 30967594 [TBL] [Abstract][Full Text] [Related]
4. Development of a Terpenoid-Production Platform in Streptomyces reveromyceticus SN-593. Khalid A; Takagi H; Panthee S; Muroi M; Chappell J; Osada H; Takahashi S ACS Synth Biol; 2017 Dec; 6(12):2339-2349. PubMed ID: 29019653 [TBL] [Abstract][Full Text] [Related]
5. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis. Barreales EG; Vicente CM; de Pedro A; Santos-Aberturas J; Aparicio JF Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29500267 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis. Zhang Y; He H; Liu H; Wang H; Wang X; Xiang W Microb Cell Fact; 2016 Sep; 15(1):152. PubMed ID: 27604457 [TBL] [Abstract][Full Text] [Related]
7. Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis. Mo S; Yoon YJ J Microbiol Biotechnol; 2016 Jan; 26(1):66-71. PubMed ID: 26608164 [TBL] [Abstract][Full Text] [Related]
8. Identification of TmcN as a pathway-specific positive regulator of tautomycetin biosynthesis in Streptomyces sp. CK4412. Hur YA; Choi SS; Sherman DH; Kim ES Microbiology (Reading); 2008 Oct; 154(Pt 10):2912-2919. PubMed ID: 18832298 [TBL] [Abstract][Full Text] [Related]
10. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators. Vicente CM; Payero TD; Santos-Aberturas J; Barreales EG; de Pedro A; Aparicio JF Appl Microbiol Biotechnol; 2015 Jun; 99(12):5123-35. PubMed ID: 25715784 [TBL] [Abstract][Full Text] [Related]
11. Identification of biosynthetic genes for the β-carboline alkaloid kitasetaline and production of the fluorinated derivatives by heterologous expression. Ueda S; Ikeda H; Namba T; Ikejiri Y; Nishimoto Y; Arai M; Nihira T; Kitani S J Ind Microbiol Biotechnol; 2019 May; 46(5):739-750. PubMed ID: 30788639 [TBL] [Abstract][Full Text] [Related]
12. Shunt products of aminoansamycins from aas1 overexpressed mutant strain of Streptomyces sp. S35. Dai LP; Wang ZS; Wang HX; Lu CH; Shen YM Chin J Nat Med; 2020 Dec; 18(12):952-956. PubMed ID: 33357726 [TBL] [Abstract][Full Text] [Related]
13. Production of a Novel Amide-Containing Polyene by Activating a Cryptic Biosynthetic Gene Cluster in Streptomyces sp. MSC090213JE08. Du D; Katsuyama Y; Onaka H; Fujie M; Satoh N; Shin-Ya K; Ohnishi Y Chembiochem; 2016 Aug; 17(15):1464-71. PubMed ID: 27311327 [TBL] [Abstract][Full Text] [Related]
14. GdmRIII, a TetR Family Transcriptional Regulator, Controls Geldanamycin and Elaiophylin Biosynthesis in Streptomyces autolyticus CGMCC0516. Jiang M; Yin M; Wu S; Han X; Ji K; Wen M; Lu T Sci Rep; 2017 Jul; 7(1):4803. PubMed ID: 28684749 [TBL] [Abstract][Full Text] [Related]
15. Identification of AstG1, A LAL family regulator that positively controls ansatrienins production in Streptomyces sp. XZQH13. Xie C; Deng JJ; Wang HX Curr Microbiol; 2015 Jun; 70(6):859-64. PubMed ID: 25784540 [TBL] [Abstract][Full Text] [Related]
16. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. Gallagher KA; Jensen PR BMC Genomics; 2015 Nov; 16():960. PubMed ID: 26578069 [TBL] [Abstract][Full Text] [Related]
17. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Antón N; Mendes MV; Martín JF; Aparicio JF J Bacteriol; 2004 May; 186(9):2567-75. PubMed ID: 15090496 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tü6071: analysis of the gene cluster and generation of derivatives. Dürr C; Schnell HJ; Luzhetskyy A; Murillo R; Weber M; Welzel K; Vente A; Bechthold A Chem Biol; 2006 Apr; 13(4):365-77. PubMed ID: 16632249 [TBL] [Abstract][Full Text] [Related]
19. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. Kawasaki T; Kuzuyama T; Furihata K; Itoh N; Seto H; Dairi T J Antibiot (Tokyo); 2003 Nov; 56(11):957-66. PubMed ID: 14763562 [TBL] [Abstract][Full Text] [Related]
20. Exploring novel herbicidin analogues by transcriptional regulator overexpression and MS/MS molecular networking. Shi Y; Gu R; Li Y; Wang X; Ren W; Li X; Wang L; Xie Y; Hong B Microb Cell Fact; 2019 Oct; 18(1):175. PubMed ID: 31615513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]