These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35778800)

  • 1. Transcriptome Profiling Reveals Molecular Players in Early Soybean-
    Wei W; Wu X; Blahut-Beatty L; Simmonds DH; Clough SJ
    Phytopathology; 2022 Aug; 112(8):1739-1752. PubMed ID: 35778800
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase.
    Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y
    Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment.
    Calla B; Blahut-Beatty L; Koziol L; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):576-88. PubMed ID: 24330102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic evaluation of oxalate-degrading transgenic soybean in response to Sclerotinia sclerotiorum infection.
    Calla B; Blahut-Beatty L; Koziol L; Zhang Y; Neece DJ; Carbajulca D; Garcia A; Simmonds DH; Clough SJ
    Mol Plant Pathol; 2014 Aug; 15(6):563-75. PubMed ID: 24382019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis.
    Westrick NM; Ranjan A; Jain S; Grau CR; Smith DL; Kabbage M
    BMC Genomics; 2019 Feb; 20(1):157. PubMed ID: 30808300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines.
    Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE
    PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis.
    Ranjan A; Westrick NM; Jain S; Piotrowski JS; Ranjan M; Kessens R; Stiegman L; Grau CR; Conley SP; Smith DL; Kabbage M
    Plant Biotechnol J; 2019 Aug; 17(8):1567-1581. PubMed ID: 30672092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Transcriptome Analysis of Host and Pathogen Highlights the Interaction Between Brassica oleracea and Sclerotinia sclerotiorum.
    Ding Y; Mei J; Chai Y; Yu Y; Shao C; Wu Q; Disi JO; Li Y; Wan H; Qian W
    Phytopathology; 2019 Apr; 109(4):542-550. PubMed ID: 30265202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G
    Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean.
    Yang X; Yang J; Li H; Niu L; Xing G; Zhang Y; Xu W; Zhao Q; Li Q; Dong Y
    Transgenic Res; 2020 Apr; 29(2):187-198. PubMed ID: 31970612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum.
    Wei W; Pierre-Pierre N; Peng H; Ellur V; Vandemark GJ; Chen W
    Fungal Genet Biol; 2020 Dec; 145():103482. PubMed ID: 33137429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of barley oxalate oxidase confers resistance against Sclerotinia sclerotiorum in transgenic Brassica juncea cv Varuna.
    Verma R; Kaur J
    Transgenic Res; 2021 Apr; 30(2):143-154. PubMed ID: 33527156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of glutathione transferase gene associated with partial resistance to Sclerotinia stem rot of soybean using genome-wide association and linkage mapping.
    Jianan Z; Li W; Zhang Y; Song W; Jiang H; Zhao J; Zhan Y; Teng W; Qiu L; Zhao X; Han Y
    Theor Appl Genet; 2021 Aug; 134(8):2699-2709. PubMed ID: 34057551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.
    Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J
    Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.
    Qiu D; Xu L; Vandemark G; Chen W
    J Hered; 2016 Mar; 107(2):163-72. PubMed ID: 26615185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of differentially expressed Sclerotinia sclerotiorum genes during the interaction with moderately resistant and highly susceptible chickpea lines.
    Mwape VW; Mobegi FM; Regmi R; Newman TE; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2021 May; 22(1):333. PubMed ID: 33964897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C
    Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.