These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 35778928)
1. PROTEIN S-ACYL TRANSFERASE 13/16 modulate disease resistance by S-acylation of the nucleotide binding, leucine-rich repeat protein R5L1 in Arabidopsis. Gao J; Huang G; Chen X; Zhu YX J Integr Plant Biol; 2022 Sep; 64(9):1789-1802. PubMed ID: 35778928 [TBL] [Abstract][Full Text] [Related]
2. Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Qi D; DeYoung BJ; Innes RW Plant Physiol; 2012 Apr; 158(4):1819-32. PubMed ID: 22331412 [TBL] [Abstract][Full Text] [Related]
3. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Eitas TK; Nimchuk ZL; Dangl JL Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6475-80. PubMed ID: 18424557 [TBL] [Abstract][Full Text] [Related]
4. The TIR-NBS protein TN13 associates with the CC-NBS-LRR resistance protein RPS5 and contributes to RPS5-triggered immunity in Arabidopsis. Cai H; Wang W; Rui L; Han L; Luo M; Liu N; Tang D Plant J; 2021 Aug; 107(3):775-786. PubMed ID: 33982335 [TBL] [Abstract][Full Text] [Related]
5. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis. Lai J; Yu B; Cao Z; Chen Y; Wu Q; Huang J; Yang C J Exp Bot; 2015 Oct; 66(20):6345-53. PubMed ID: 26160582 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Resistance of Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971 [TBL] [Abstract][Full Text] [Related]
7. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
8. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. Wen Z; Yao L; Singer SD; Muhammad H; Li Z; Wang X Plant Physiol Biochem; 2017 Mar; 112():346-361. PubMed ID: 28131063 [TBL] [Abstract][Full Text] [Related]
9. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
11. Constitutive Overexpression of an NB-ARC Gene from Wild Chinese Yin X; Zha Q; Sun P; Xi X; Jiang A Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542196 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Knepper C; Savory EA; Day B Plant Physiol; 2011 May; 156(1):286-300. PubMed ID: 21398259 [TBL] [Abstract][Full Text] [Related]
13. Chitosan oligosaccharide induces resistance to Pst DC3000 in Arabidopsis via a non-canonical N-glycosylation regulation pattern. Jia X; Zeng H; Bose SK; Wang W; Yin H Carbohydr Polym; 2020 Dec; 250():116939. PubMed ID: 33049851 [TBL] [Abstract][Full Text] [Related]
15. SAD2 functions in plant pathogen Pseudomonas syringae pv tomato DC3000 defense by regulating the nuclear accumulation of MYB30 in Arabidopsis thaliana. Shi T; Zheng Y; Wang R; Li S; Xu A; Chen L; Liu Y; Luo R; Huang C; Sun Y; Zhao J; Guo X; Wang H; Liu J; Gao Y Plant Sci; 2024 Jul; 344():112089. PubMed ID: 38640973 [TBL] [Abstract][Full Text] [Related]
16. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493 [TBL] [Abstract][Full Text] [Related]
17. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. Niu D; Xia J; Jiang C; Qi B; Ling X; Lin S; Zhang W; Guo J; Jin H; Zhao H J Integr Plant Biol; 2016 Apr; 58(4):426-39. PubMed ID: 26526683 [TBL] [Abstract][Full Text] [Related]
18. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on s-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Qi D; Dubiella U; Kim SH; Sloss DI; Dowen RH; Dixon JE; Innes RW Plant Physiol; 2014 Jan; 164(1):340-51. PubMed ID: 24225654 [TBL] [Abstract][Full Text] [Related]
19. Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Yu L; Wang Y; Liu Y; Li N; Yan J; Luo L Biochem Biophys Res Commun; 2018 Sep; 504(1):149-156. PubMed ID: 30172369 [TBL] [Abstract][Full Text] [Related]
20. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N; Joardar V; Street IH; Kunkel BN Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]