These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35779656)

  • 21. Can dual-ligand targeting enhance cellular uptake of nanoparticles?
    Xia QS; Ding HM; Ma YQ
    Nanoscale; 2017 Jul; 9(26):8982-8989. PubMed ID: 28447687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment.
    David A
    Adv Drug Deliv Rev; 2017 Sep; 119():120-142. PubMed ID: 28506743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo targeted delivery of nanoparticles for theranosis.
    Koo H; Huh MS; Sun IC; Yuk SH; Choi K; Kim K; Kwon IC
    Acc Chem Res; 2011 Oct; 44(10):1018-28. PubMed ID: 21851104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives.
    Wang X; Wu C; Liu S; Peng D
    Drug Deliv; 2022 Dec; 29(1):1370-1383. PubMed ID: 35532094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC.
    Chen H; Deng J; Yao X; He Y; Li H; Jian Z; Tang Y; Zhang X; Zhang J; Dai H
    J Nanobiotechnology; 2021 Oct; 19(1):342. PubMed ID: 34702291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy.
    Tang L; Mei Y; Shen Y; He S; Xiao Q; Yin Y; Xu Y; Shao J; Wang W; Cai Z
    Int J Nanomedicine; 2021; 16():5811-5829. PubMed ID: 34471353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting death receptors for drug-resistant cancer therapy: Codelivery of pTRAIL and monensin using dual-targeting and stimuli-responsive self-assembling nanocomposites.
    Xu F; Zhong H; Chang Y; Li D; Jin H; Zhang M; Wang H; Jiang C; Shen Y; Huang Y
    Biomaterials; 2018 Mar; 158():56-73. PubMed ID: 29304403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery.
    Xiao D; Jia HZ; Zhang J; Liu CW; Zhuo RX; Zhang XZ
    Small; 2014 Feb; 10(3):591-8. PubMed ID: 24106109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimuli-responsive Smart Liposomes in Cancer Targeting.
    Jain A; Jain SK
    Curr Drug Targets; 2018 Feb; 19(3):259-270. PubMed ID: 26853324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas.
    Liu Y; Wang H; Tang M; Cao W; Zhang Z; Li X
    Acta Biomater; 2020 Jul; 110():231-241. PubMed ID: 32380183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery.
    Zhao J; Yan C; Chen Z; Liu J; Song H; Wang W; Liu J; Yang N; Zhao Y; Chen L
    J Colloid Interface Sci; 2019 Mar; 540():66-77. PubMed ID: 30634060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring.
    Qian Y; Wang Y; Jia F; Wang Z; Yue C; Zhang W; Hu Z; Wang W
    Biomaterials; 2019 Jan; 188():96-106. PubMed ID: 30339943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy.
    Wei Z; Zhou Y; Wang R; Wang J; Chen Z
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced nanoparticle delivery exploiting tumour-responsive formulations.
    Bennie LA; McCarthy HO; Coulter JA
    Cancer Nanotechnol; 2018; 9(1):10. PubMed ID: 30595759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment.
    Yang M; Li J; Gu P; Fan X
    Bioact Mater; 2021 Jul; 6(7):1973-1987. PubMed ID: 33426371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-sensitive drug-delivery systems for tumor targeting.
    He X; Li J; An S; Jiang C
    Ther Deliv; 2013 Dec; 4(12):1499-510. PubMed ID: 24304248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors.
    Dai Q; Wilhelm S; Ding D; Syed AM; Sindhwani S; Zhang Y; Chen YY; MacMillan P; Chan WCW
    ACS Nano; 2018 Aug; 12(8):8423-8435. PubMed ID: 30016073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimuli-Responsive Aptamer-Drug Conjugates for Targeted Drug Delivery and Controlled Drug Release.
    Zhu S; Gao H; Li W; He X; Jiang P; Xu F; Jin G; Guo H
    Adv Healthc Mater; 2024 Sep; 13(23):e2401020. PubMed ID: 38742703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy.
    Zhou Y; Chen X; Cao J; Gao H
    J Mater Chem B; 2020 Aug; 8(31):6765-6781. PubMed ID: 32315375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating.
    Mei L; Zhang Q; Yang Y; He Q; Gao H
    Int J Pharm; 2014 Oct; 474(1-2):95-102. PubMed ID: 25138251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.