These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35779682)

  • 1. Ce(Ⅲ) activates peroxymonosulfate for the degradation of substituted PAHs.
    Chen X; Wang P; Peng F; Zhou Z; Waigi MG; Ling W
    Chemosphere; 2022 Nov; 306():135525. PubMed ID: 35779682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Distribution and Removal of Polycyclic Aromatic Hydrocarbons and Their Derivatives in SBR/MBBR Process].
    Liu SH; Tian WJ; Zhou JR; Zhao J; Wang Z
    Huan Jing Ke Xue; 2019 Feb; 40(2):747-753. PubMed ID: 30628339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Occurrence and Removal of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Typical Wastewater Treatment Plants in Beijing].
    Qiao M; Qi WX; Zhao X; Liu HJ; Qu JH
    Huan Jing Ke Xue; 2016 Apr; 37(4):1451-9. PubMed ID: 27548968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation and toxicity dynamics of polycyclic aromatic hydrocarbons in a novel biological-constructed wetland-microalgal wastewater treatment process.
    Lu J; Zhang J; Xie H; Wu H; Jing Y; Ji M; Hu Z
    Water Res; 2022 Sep; 223():119023. PubMed ID: 36058097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, fates, and carcinogenic risks of substituted polycyclic aromatic hydrocarbons in two coking wastewater treatment systems.
    Saber AN; Zhang H; Islam A; Yang M
    Sci Total Environ; 2021 Oct; 789():147808. PubMed ID: 34058590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence, behavior and removal of typical substituted and parent polycyclic aromatic hydrocarbons in a biological wastewater treatment plant.
    Qiao M; Qi W; Liu H; Qu J
    Water Res; 2014 Apr; 52():11-9. PubMed ID: 24440761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of parent and substituted polycyclic aromatic hydrocarbons in typical wastewater treatment plants and effluent receiving rivers of Beijing, and risk assessment.
    Cao W; Qiao M; Liu B; Zhao X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):992-999. PubMed ID: 29764288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai rivers in northern China.
    Qiao M; Fu L; Li Z; Liu D; Bai Y; Zhao X
    Environ Pollut; 2020 Feb; 257():113600. PubMed ID: 31748130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of upgrading wastewater treatment plant on the removal of typical methyl, oxygenated, chlorinated and parent polycyclic aromatic hydrocarbons.
    Qiao M; Cao W; Liu B; Bai Y; Qi W; Zhao X; Qu J
    Sci Total Environ; 2017 Dec; 603-604():140-147. PubMed ID: 28624634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile one-step preparation of Co and Ce doped TiO
    Wang M; Li T; Hou Q; Hao Y; Wang Z
    Chemosphere; 2022 Dec; 308(Pt 3):136360. PubMed ID: 36115476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-MoO
    Chen X; Vione D; Borch T; Wang J; Gao Y
    Water Res; 2021 Mar; 192():116834. PubMed ID: 33486288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and removal of polycyclic aromatic hydrocarbons and their derivatives in an ecological wastewater treatment plant in South China and effluent impact to the receiving river.
    Qiao M; Fu L; Cao W; Bai Y; Huang Q; Zhao X
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5638-5644. PubMed ID: 30612361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted degradation of naphthalene by peroxymonosulfate activation using molecularly imprinted biochar.
    You X; Dai C; Wang Z; Duan Y; Zhang JB; Lai X; Hu J; Li J; Maimaitijiang M; Zhang Y; Liu S; Fu R
    Chemosphere; 2023 Dec; 345():140491. PubMed ID: 37863207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient decomposition of perfluorooctane sulfonate by electrochemical activation of peroxymonosulfate in aqueous solution: Efficacy, reaction mechanism, active sites, and application potential.
    Li M; Jin YT; Cao DY; Yang LL; Yan JF; Zhang ZX; Liu Z; Huang LW; Zhou SQ; Cheng JL; Zhao Q; Zhao HM; Feng NX; Mo CH
    Water Res; 2022 Aug; 221():118778. PubMed ID: 35752093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation.
    Ding J; Nie H; Wang S; Chen Y; Wan Y; Wang J; Xiao H; Yue S; Ma J; Xie P
    Water Res; 2021 Feb; 189():116605. PubMed ID: 33189970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The remediation of marine sediments containing polycyclic aromatic hydrocarbons by peroxymonosulfate activated with Sphagnum moss-derived biochar and its benthic microbial ecology.
    Dong CD; Huang CP; Chen CW; Hung CM
    Environ Pollut; 2024 Jan; 341():122912. PubMed ID: 37956766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives.
    Qiao M; Bai Y; Cao W; Huo Y; Zhao X; Liu D; Li Z
    Chemosphere; 2018 Nov; 211():185-191. PubMed ID: 30071431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of peroxymonosulfate by phosphite: Kinetics and mechanism for the removal of organic pollutants.
    Peng G; You W; Zhou W; Zhou G; Qi C; Hu Y
    Chemosphere; 2021 Mar; 266():129016. PubMed ID: 33248738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater.
    Sui C; Nie Z; Liu H; Boczkaj G; Liu W; Kong L; Zhan J
    J Environ Sci (China); 2024 Jan; 135():86-96. PubMed ID: 37778844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic degradation of organic pollutants in Fe(III)/peroxymonosulfate (PMS) system: performance, influencing factors, and pathway.
    Latif A; Kai S; Si Y
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36410-36422. PubMed ID: 31728944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.