BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35779745)

  • 1. Microwave catalytic co-pyrolysis of chlorella vulgaris and oily sludge: Characteristics and bio-oil analysis.
    Chen C; Ling H; Qiu S; Huang X; Fan D; Zhao J
    Bioresour Technol; 2022 Sep; 360():127550. PubMed ID: 35779745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave catalytic co-pyrolysis of Chlorella vulgaris and high density polyethylene over activated carbon supported monometallic: Characteristics and bio-oil analysis.
    Chen C; Fan D; Ling H; Huang X; Yang G; Cai D; Zhao J; Bi Y
    Bioresour Technol; 2022 Nov; 363():127881. PubMed ID: 36067896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on co-pyrolysis and products of Chlorella vulgaris and rice straw catalyzed by activated carbon/HZSM-5 additives.
    Chen C; Wei D; Zhao J; Huang X; Fan D; Qi Q; Bi Y; Liao L
    Bioresour Technol; 2022 Sep; 360():127594. PubMed ID: 35809872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives.
    Chen L; Yu Z; Xu H; Wan K; Liao Y; Ma X
    Bioresour Technol; 2019 Feb; 273():34-39. PubMed ID: 30399608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted co-pyrolysis of chlorella vulgaris and polypropylene: Characteristic and product distribution analyses.
    Chen C; Zhao J; Fan D; Qi Q; Zeng T; Bi Y
    Bioresour Technol; 2022 Jan; 344(Pt B):126279. PubMed ID: 34752889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on microwave pyrolysis and production characteristics of Chlorella vulgaris using different compound additives.
    Chen C; Qi Q; Zhao J; Zeng T; Fan D; Qin Y
    Bioresour Technol; 2021 Dec; 341():125857. PubMed ID: 34523553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris.
    Tang F; Yu Z; Li Y; Chen L; Ma X
    Bioresour Technol; 2020 Mar; 299():122636. PubMed ID: 31881438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil.
    Zhang X; Yu Z; Lu X; Ma X
    Bioresour Technol; 2021 Jan; 319():124191. PubMed ID: 33022438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production.
    Zhao Y; Wang Y; Duan D; Ruan R; Fan L; Zhou Y; Dai L; Lv J; Liu Y
    Bioresour Technol; 2018 Feb; 249():69-75. PubMed ID: 29040862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism.
    Qiu Z; Zhai Y; Li S; Liu X; Liu X; Wang B; Liu Y; Li C; Hu Y
    Waste Manag; 2020 Aug; 114():225-233. PubMed ID: 32682087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating.
    Bu Q; Cao M; Wang M; Zhang X; Mao H
    Sci Total Environ; 2021 Feb; 754():142174. PubMed ID: 32916498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: Co-feeding of soapstock and straw in a downdraft reactor.
    Wu Q; Wang Y; Jiang L; Yang Q; Ke L; Peng Y; Yang S; Dai L; Liu Y; Ruan R
    Bioresour Technol; 2020 Mar; 299():122611. PubMed ID: 31874451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different ash/organics and C/H/O ratios on characteristics and reaction mechanisms of sludge microwave pyrolysis to generate bio-fuels.
    Luo J; Lin J; Ma R; Chen X; Sun S; Zhang P; Liu X
    Waste Manag; 2020 Nov; 117():188-197. PubMed ID: 32861081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach.
    O'Boyle M; Mohamed BA; Li LY
    Chemosphere; 2024 Feb; 350():141074. PubMed ID: 38160959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of soybean soapstock for hydrocarbon bio-oil over a microwave-responsive catalyst in a series microwave system.
    Wu Q; Jiang L; Wang Y; Dai L; Liu Y; Zou R; Tian X; Ke L; Yang X; Ruan R
    Bioresour Technol; 2021 Dec; 341():125800. PubMed ID: 34438288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating pyrolysis and ex-situ catalytic reforming by microwave heating to produce hydrocarbon-rich bio-oil from soybean soapstock.
    Jiang L; Wang Y; Dai L; Yu Z; Wu Q; Zhao Y; Liu Y; Ruan R; Ke L; Peng Y; Xia D; Jiang L
    Bioresour Technol; 2020 Apr; 302():122843. PubMed ID: 32006926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxygen vacancy defect on microwave pyrolysis of biomass to produce high-quality syngas and bio-oil: Microwave absorption and in-situ catalytic.
    Lin J; Sun S; Luo J; Cui C; Ma R; Fang L; Liu X
    Waste Manag; 2021 Jun; 128():200-210. PubMed ID: 34000690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.