BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35779777)

  • 21. Pharmacological bypass of NAD
    Liu HW; Smith CB; Schmidt MS; Cambronne XA; Cohen MS; Migaud ME; Brenner C; Goodman RH
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10654-10659. PubMed ID: 30257945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport.
    Yang S; Niou ZX; Enriquez A; LaMar J; Huang JY; Ling K; Jafar-Nejad P; Gilley J; Coleman MP; Tennessen JM; Rangaraju V; Lu HC
    Mol Neurodegener; 2024 Jan; 19(1):13. PubMed ID: 38282024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons.
    Sasaki Y; Engber TM; Hughes RO; Figley MD; Wu T; Bosanac T; Devraj R; Milbrandt J; Krauss R; DiAntonio A
    Exp Neurol; 2020 Jul; 329():113252. PubMed ID: 32087251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration.
    Gould SA; Gilley J; Ling K; Jafar-Nejad P; Rigo F; Coleman M
    Cell Rep; 2021 Dec; 37(11):110108. PubMed ID: 34910914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program.
    Geisler S; Doan RA; Cheng GC; Cetinkaya-Fisgin A; Huang SX; Höke A; Milbrandt J; DiAntonio A
    JCI Insight; 2019 Sep; 4(17):. PubMed ID: 31484833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2.
    Yamagishi Y; Tessier-Lavigne M
    Cell Rep; 2016 Oct; 17(3):774-782. PubMed ID: 27732853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly.
    Neukomm LJ; Burdett TC; Seeds AM; Hampel S; Coutinho-Budd JC; Farley JE; Wong J; Karadeniz YB; Osterloh JM; Sheehan AE; Freeman MR
    Neuron; 2017 Jul; 95(1):78-91.e5. PubMed ID: 28683272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD
    Essuman K; Summers DW; Sasaki Y; Mao X; DiAntonio A; Milbrandt J
    Neuron; 2017 Mar; 93(6):1334-1343.e5. PubMed ID: 28334607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide.
    Sasaki Y; Vohra BP; Lund FE; Milbrandt J
    J Neurosci; 2009 Apr; 29(17):5525-35. PubMed ID: 19403820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of initiation and regulation of axonal degeneration with special reference to NMNATs and Sarm1.
    Funakoshi M; Araki T
    Neurosci Res; 2023 Dec; 197():3-8. PubMed ID: 34767875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity.
    Yan T; Feng Y; Zheng J; Ge X; Zhang Y; Wu D; Zhao J; Zhai Q
    Neurochem Int; 2010 Jan; 56(1):101-6. PubMed ID: 19778564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products.
    Garb J; Amitai G; Lu A; Ofir G; Brandis A; Mehlman T; Kranzusch PJ; Sorek R
    PLoS One; 2024; 19(4):e0302251. PubMed ID: 38635746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wallerian degeneration: an emerging axon death pathway linking injury and disease.
    Conforti L; Gilley J; Coleman MP
    Nat Rev Neurosci; 2014 Jun; 15(6):394-409. PubMed ID: 24840802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMNAT2: An important metabolic enzyme affecting the disease progression.
    Li W; Gao M; Hu C; Chen X; Zhou Y
    Biomed Pharmacother; 2023 Feb; 158():114143. PubMed ID: 36528916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programmed axon degeneration: from mouse to mechanism to medicine.
    Coleman MP; Höke A
    Nat Rev Neurosci; 2020 Apr; 21(4):183-196. PubMed ID: 32152523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An NAD+/NMN balancing act by SARM1 and NMNAT2 controls axonal degeneration.
    Waller TJ; Collins CA
    Neuron; 2021 Apr; 109(7):1067-1069. PubMed ID: 33831359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation.
    Summers DW; Gibson DA; DiAntonio A; Milbrandt J
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6271-E6280. PubMed ID: 27671644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the first noncompetitive SARM1 inhibitors.
    Loring HS; Parelkar SS; Mondal S; Thompson PR
    Bioorg Med Chem; 2020 Sep; 28(18):115644. PubMed ID: 32828421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo.
    Milde S; Gilley J; Coleman MP
    Bioarchitecture; 2013; 3(5):133-40. PubMed ID: 24284888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophage depletion blocks congenital SARM1-dependent neuropathy.
    Dingwall CB; Strickland A; Yum SW; Yim AK; Zhu J; Wang PL; Yamada Y; Schmidt RE; Sasaki Y; Bloom AJ; DiAntonio A; Milbrandt J
    J Clin Invest; 2022 Dec; 132(23):. PubMed ID: 36287209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.