These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35780122)

  • 21. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises.
    Eom SH; Lee EH
    Technol Health Care; 2016 Apr; 24 Suppl 2():S607-23. PubMed ID: 27163324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilateral priming before wii-based movement therapy enhances upper limb rehabilitation and its retention after stroke: a case-controlled study.
    Shiner CT; Byblow WD; McNulty PA
    Neurorehabil Neural Repair; 2014; 28(9):828-38. PubMed ID: 24627333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
    Ding WL; Zheng YZ; Su YP; Li XL
    J Back Musculoskelet Rehabil; 2018; 31(4):611-621. PubMed ID: 29578471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An interactive Internet-based system for tracking upper limb motion in home-based rehabilitation.
    Zhang S; Hu H; Zhou H
    Med Biol Eng Comput; 2008 Mar; 46(3):241-9. PubMed ID: 18087743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Home-Based Rehabilitation System for Stroke Survivors: A Clinical Evaluation.
    Ghorbel E; Baptista R; Shabayek A; Aouada D; Oramaeche MG; Lago JO; Fernandez LO
    J Med Syst; 2020 Oct; 44(12):203. PubMed ID: 33111159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement.
    Simonsen D; Popovic MB; Spaich EG; Andersen OK
    Med Biol Eng Comput; 2017 Nov; 55(11):1927-1935. PubMed ID: 28343334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Analysis of Upper Limbs Motion during Rehabilitation Exercises Using the Kinect
    Bonnechère B; Sholukha V; Omelina L; Van Sint Jan S; Jansen B
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29996533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Home self-training: Visual feedback for assisting physical activity for stroke survivors.
    Baptista R; Ghorbel E; Shabayek AER; Moissenet F; Aouada D; Douchet A; André M; Pager J; Bouilland S
    Comput Methods Programs Biomed; 2019 Jul; 176():111-120. PubMed ID: 31200899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified Constraint-Induced Movement Therapy is a feasible and potentially useful addition to the Community Rehabilitation tool kit after stroke: A pilot randomised control trial.
    Baldwin CR; Harry AJ; Power LJ; Pope KL; Harding KE
    Aust Occup Ther J; 2018 Dec; 65(6):503-511. PubMed ID: 29920688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Validation of Vision-Based Exercise Biofeedback for Tele-Rehabilitation.
    Barzegar Khanghah A; Fernie G; Roshan Fekr A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of Upper Limb Motor Control and Function After Competitive and Noncompetitive Volleyball Exercises in Chronic Stroke Survivors: A Randomized Clinical Trial.
    Mandehgary Najafabadi M; Azad A; Mehdizadeh H; Behzadipour S; Fakhar M; Taghavi Azar Sharabiani P; Parnianpour M; Taghizadeh G; Khalaf K
    Arch Phys Med Rehabil; 2019 Mar; 100(3):401-411. PubMed ID: 30419232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke.
    Duff M; Chen Y; Cheng L; Liu SM; Blake P; Wolf SL; Rikakis T
    Neurorehabil Neural Repair; 2013 May; 27(4):306-15. PubMed ID: 23213076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Home-based self-help telerehabilitation of the upper limb assisted by an electromyography-driven wrist/hand exoneuromusculoskeleton after stroke.
    Nam C; Zhang B; Chow T; Ye F; Huang Y; Guo Z; Li W; Rong W; Hu X; Poon W
    J Neuroeng Rehabil; 2021 Sep; 18(1):137. PubMed ID: 34526058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Case Series of a Knowledge Translation Intervention to Increase Upper Limb Exercise in Stroke Rehabilitation.
    Connell LA; McMahon NE; Tyson SF; Watkins CL; Eng JJ
    Phys Ther; 2016 Dec; 96(12):1930-1937. PubMed ID: 27340194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.