These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35780269)

  • 1. Predicting the flocculation kinetics of fine particles in a turbulent flow using a Budyko-type model.
    Zhu Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84268-84286. PubMed ID: 35780269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Extended Entropic Model for Cohesive Sediment Flocculation in a Piecewise Varied Shear Environment.
    Zhu Z; Dou J
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34681987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
    Zhu Z; Wang H; Yu J; Dou J
    PLoS One; 2016; 11(2):e0148895. PubMed ID: 26901652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the importance of temporal floc size statistics and yield strength for population balance equation flocculation model.
    Penaloza-Giraldo JA; Hsu TJ; Manning AJ; Ye L; Vowinckel B; Meiburg E
    Water Res; 2023 Apr; 233():119780. PubMed ID: 36868115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study.
    Zhu Z; Peng D; Dou J
    Water Sci Technol; 2018 Feb; 77(3-4):861-870. PubMed ID: 29488949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow.
    He W; Nan J; Li H; Li S
    Water Res; 2012 Feb; 46(2):509-20. PubMed ID: 22137291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics.
    Chaignon V; Lartiges BS; El Samrani A; Mustin C
    Water Res; 2002 Feb; 36(3):676-84. PubMed ID: 11827330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Explicit Expression for the Flocculation Dynamics Modeling of Cohesive Sediment Based on Entropy Considerations.
    Zhu Z
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the micro-flocculation stage on the flocculation/sedimentation process: The role of shear rate.
    Wang Z; Nan J; Ji X; Yang Y
    Sci Total Environ; 2018 Aug; 633():1183-1191. PubMed ID: 29758870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical characterization of floc morphology: role of changing hydraulic retention time under flocculation mechanisms.
    Nan J; Yao M; Chen T; Wang Z; Li Q; Zhan D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3596-608. PubMed ID: 26490940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment.
    Rau MJ; Ackleson SG; Smith GB
    PLoS One; 2018; 13(12):e0207809. PubMed ID: 30521537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation.
    Spicer PT; Keller W; Pratsinis SE
    J Colloid Interface Sci; 1996 Dec; 184(1):112-22. PubMed ID: 8954644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Shannon entropy to model turbulence-induced flocculation of cohesive sediment in water.
    Zhu Z; Peng D
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):959-974. PubMed ID: 30421370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing flocculation under heterogeneous turbulence.
    Hopkins DC; Ducoste JJ
    J Colloid Interface Sci; 2003 Aug; 264(1):184-94. PubMed ID: 12885534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.
    Whittington PN; George N
    Biotechnol Bioeng; 1992 Aug; 40(4):451-8. PubMed ID: 18601138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floc morphology and size distributions of cohesive sediment in steady-state flow.
    Stone M; Krishnappan BG
    Water Res; 2003 Jun; 37(11):2739-47. PubMed ID: 12753852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floc compaction during ballasted aggregation.
    Sieliechi J; Lartiges B; Skali-Lami S; Kayem J; Kamga R
    Water Res; 2016 Nov; 105():361-369. PubMed ID: 27643750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of floc strength and breakage.
    Jarvis P; Jefferson B; Gregory J; Parsons SA
    Water Res; 2005 Sep; 39(14):3121-37. PubMed ID: 16000210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer Simulation Elucidates Yeast Flocculation and Sedimentation for Efficient Industrial Fermentation.
    Liu CG; Li ZY; Hao Y; Xia J; Bai FW; Mehmood MA
    Biotechnol J; 2018 May; 13(5):e1700697. PubMed ID: 29328545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan.
    Ferretti R; Stoll S; Zhang J; Buffle J
    J Colloid Interface Sci; 2003 Oct; 266(2):328-38. PubMed ID: 14527456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.