These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35780494)
1. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. Fritsch B; Zech TS; Bruns MP; Körner A; Khadivianazar S; Wu M; Zargar Talebi N; Virtanen S; Unruh T; Jank MPM; Spiecker E; Hutzler A Adv Sci (Weinh); 2022 Sep; 9(25):e2202803. PubMed ID: 35780494 [TBL] [Abstract][Full Text] [Related]
2. Sunlight-driving formation and characterization of size-controlled gold nanoparticles. Luo Y J Nanosci Nanotechnol; 2007 Feb; 7(2):708-11. PubMed ID: 17450819 [TBL] [Abstract][Full Text] [Related]
3. In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virus. Moreira Da Silva C; Ortiz-Peña N; Boubekeur-Lecaque L; Dušek J; Moravec T; Alloyeau D; Ha-Duong NT Nano Lett; 2023 Jun; 23(11):5281-5287. PubMed ID: 37272864 [TBL] [Abstract][Full Text] [Related]
4. Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Meyre ME; Tréguer-Delapierre M; Faure C Langmuir; 2008 May; 24(9):4421-5. PubMed ID: 18402491 [TBL] [Abstract][Full Text] [Related]
5. Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopy. Khelfa A; Nelayah J; Wang G; Ricolleau C; Alloyeau D J Vis Exp; 2021 Feb; (168):. PubMed ID: 33682852 [TBL] [Abstract][Full Text] [Related]
6. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. Cho H; Jones MR; Nguyen SC; Hauwiller MR; Zettl A; Alivisatos AP Nano Lett; 2017 Jan; 17(1):414-420. PubMed ID: 28026186 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Singh P; Kumari K; Katyal A; Kalra R; Chandra R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833 [TBL] [Abstract][Full Text] [Related]
8. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with Wang M; Leff AC; Li Y; Woehl TJ ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576 [TBL] [Abstract][Full Text] [Related]
9. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. Hauwiller MR; Ondry JC; Alivisatos AP J Vis Exp; 2018 May; (135):. PubMed ID: 29863683 [TBL] [Abstract][Full Text] [Related]
10. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. Shen J; Xu L; Wang C; Pei H; Tai R; Song S; Huang Q; Fan C; Chen G Angew Chem Int Ed Engl; 2014 Aug; 53(32):8338-42. PubMed ID: 24954711 [TBL] [Abstract][Full Text] [Related]
11. DNA-templated gold nanoparticles formation. Sun L; Song Y; Wang L; Sun Y; Guo C; Liu Z; Li Z J Nanosci Nanotechnol; 2008 Sep; 8(9):4415-23. PubMed ID: 19049035 [TBL] [Abstract][Full Text] [Related]
12. In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysis. Kurtyka N; van Devener B; Chung BW; McDonald LW ACS Omega; 2023 Dec; 8(50):48336-48343. PubMed ID: 38144047 [TBL] [Abstract][Full Text] [Related]
13. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum. Narayanan KB; Sakthivel N World J Microbiol Biotechnol; 2013 Nov; 29(11):2207-11. PubMed ID: 23736894 [TBL] [Abstract][Full Text] [Related]
15. Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy. Bae Y; Lim K; Kim S; Kang D; Kim BH; Kim J; Kang S; Jeon S; Cho J; Lee WB; Lee WC; Park J Nano Lett; 2020 Dec; 20(12):8704-8710. PubMed ID: 33186041 [TBL] [Abstract][Full Text] [Related]
16. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy. Couasnon T; Fritsch B; Jank MPM; Blukis R; Hutzler A; Benning LG Adv Sci (Weinh); 2023 Sep; 10(25):e2301904. PubMed ID: 37439408 [TBL] [Abstract][Full Text] [Related]
17. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Ghodake GS; Deshpande NG; Lee YP; Jin ES Colloids Surf B Biointerfaces; 2010 Feb; 75(2):584-9. PubMed ID: 19879738 [TBL] [Abstract][Full Text] [Related]
18. Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy. Dissanayake TU; Wang M; Woehl TJ ACS Appl Mater Interfaces; 2021 Aug; 13(31):37553-37562. PubMed ID: 34338503 [TBL] [Abstract][Full Text] [Related]
19. In situ preparation of gold-polyester nanoparticles for biomedical imaging. Attia MF; Ranasinghe M; Akasov R; Anker JN; Whitehead DC; Alexis F Biomater Sci; 2020 Jun; 8(11):3032-3043. PubMed ID: 32314777 [TBL] [Abstract][Full Text] [Related]
20. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. Khelfa A; Nelayah J; Amara H; Wang G; Ricolleau C; Alloyeau D Adv Mater; 2021 Sep; 33(38):e2102514. PubMed ID: 34338365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]