BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35780569)

  • 1. Mechanical relaxations of hydrogels governed by their physical or chemical crosslinks.
    Cuenot S; Gélébart P; Sinquin C; Colliec-Jouault S; Zykwinska A
    J Mech Behav Biomed Mater; 2022 Sep; 133():105343. PubMed ID: 35780569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between infernan and calcium: From the molecular level to the mechanical properties of microgels.
    Zykwinska A; Makshakova O; Gélébart P; Sinquin C; Stephant N; Colliec-Jouault S; Perez S; Cuenot S
    Carbohydr Polym; 2022 Sep; 292():119629. PubMed ID: 35725196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts.
    Bauer A; Gu L; Kwee B; Li WA; Dellacherie M; Celiz AD; Mooney DJ
    Acta Biomater; 2017 Oct; 62():82-90. PubMed ID: 28864249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossover behavior in stress relaxations of poroelastic and viscoelastic dominant hydrogels.
    Li H; Lian X; Guan D
    Soft Matter; 2023 Jul; 19(29):5443-5451. PubMed ID: 37395080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM.
    Ben Bouali A; Montembault A; David L; Von Boxberg Y; Viallon M; Hamdi B; Nothias F; Fodil R; Féréol S
    Prog Biomater; 2020 Dec; 9(4):187-201. PubMed ID: 33156481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning.
    Crandell P; Stowers R
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6860-6869. PubMed ID: 38019272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal hydrogels made of gelatin nanoparticles exhibit fast stress relaxation at strains relevant for cell activity.
    Bertsch P; Andrée L; Besheli NH; Leeuwenburgh SCG
    Acta Biomater; 2022 Jan; 138():124-132. PubMed ID: 34740854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):597-610. PubMed ID: 31217123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the mechanical properties of biomimetic hydrogels with multivalent host-guest interactions.
    Yang B; Wei Z; Chen X; Wei K; Bian L
    J Mater Chem B; 2019 Mar; 7(10):1726-1733. PubMed ID: 32254914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
    Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL
    J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering.
    Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine.
    Markert CD; Guo X; Skardal A; Wang Z; Bharadwaj S; Zhang Y; Bonin K; Guthold M
    J Mech Behav Biomed Mater; 2013 Nov; 27():115-27. PubMed ID: 23916408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.
    Roberts JJ; Earnshaw A; Ferguson VL; Bryant SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):158-69. PubMed ID: 21714081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Evaluation of Gellan Gum/Hyaluronic Acid Hydrogel for Retinal Tissue Engineering Biomaterial and the Influence of Substrate Stress Relaxation on Retinal Pigment Epithelial Cells.
    Youn J; Choi JH; Lee S; Lee W; Lee SW; Kim W; Song Y; Tumursukh NE; Song JE; Khang G
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels.
    Tronci G; Grant CA; Thomson NH; Russell SJ; Wood DJ
    J R Soc Interface; 2015 Jan; 12(102):20141079. PubMed ID: 25411409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue.
    Fitzgerald MM; Bootsma K; Berberich JA; Sparks JL
    Biomacromolecules; 2015 May; 16(5):1497-505. PubMed ID: 25812913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.
    Lin YH; Lou J; Xia Y; Chaudhuri O
    bioRxiv; 2024 Jun; ():. PubMed ID: 38766044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.