These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. McGuinness HY; Gu W; Shi Y; Kobe B; Ve T Neuroscientist; 2024 Aug; 30(4):473-492. PubMed ID: 37002660 [TBL] [Abstract][Full Text] [Related]
5. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Sasaki Y; Zhu J; Shi Y; Gu W; Kobe B; Ve T; DiAntonio A; Milbrandt J Exp Neurol; 2021 Nov; 345():113842. PubMed ID: 34403688 [TBL] [Abstract][Full Text] [Related]
6. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Gilley J; Orsomando G; Nascimento-Ferreira I; Coleman MP Cell Rep; 2015 Mar; 10(12):1974-81. PubMed ID: 25818290 [TBL] [Abstract][Full Text] [Related]
7. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD Sasaki Y; Nakagawa T; Mao X; DiAntonio A; Milbrandt J Elife; 2016 Oct; 5():. PubMed ID: 27735788 [TBL] [Abstract][Full Text] [Related]
8. Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Alexandris AS; Ryu J; Rajbhandari L; Harlan R; McKenney J; Wang Y; Aja S; Graham D; Venkatesan A; Koliatsos VE Neurobiol Dis; 2022 Sep; 171():105808. PubMed ID: 35779777 [TBL] [Abstract][Full Text] [Related]
9. Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Gerdts J; Summers DW; Milbrandt J; DiAntonio A Neuron; 2016 Feb; 89(3):449-60. PubMed ID: 26844829 [TBL] [Abstract][Full Text] [Related]
10. Identification of the first noncompetitive SARM1 inhibitors. Loring HS; Parelkar SS; Mondal S; Thompson PR Bioorg Med Chem; 2020 Sep; 28(18):115644. PubMed ID: 32828421 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Loreto A; Hill CS; Hewitt VL; Orsomando G; Angeletti C; Gilley J; Lucci C; Sanchez-Martinez A; Whitworth AJ; Conforti L; Dajas-Bailador F; Coleman MP Neurobiol Dis; 2020 Feb; 134():104678. PubMed ID: 31740269 [TBL] [Abstract][Full Text] [Related]
12. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. Icso JD; Thompson PR J Biol Chem; 2023 Nov; 299(11):105284. PubMed ID: 37742918 [TBL] [Abstract][Full Text] [Related]
13. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Summers DW; Gibson DA; DiAntonio A; Milbrandt J Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6271-E6280. PubMed ID: 27671644 [TBL] [Abstract][Full Text] [Related]
15. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Yang S; Niou ZX; Enriquez A; LaMar J; Huang JY; Ling K; Jafar-Nejad P; Gilley J; Coleman MP; Tennessen JM; Rangaraju V; Lu HC Mol Neurodegener; 2024 Jan; 19(1):13. PubMed ID: 38282024 [TBL] [Abstract][Full Text] [Related]
16. Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1. Bratkowski M; Xie T; Thayer DA; Lad S; Mathur P; Yang YS; Danko G; Burdett TC; Danao J; Cantor A; Kozak JA; Brown SP; Bai X; Sambashivan S Cell Rep; 2020 Aug; 32(5):107999. PubMed ID: 32755591 [TBL] [Abstract][Full Text] [Related]
17. The SARM1 axon degeneration pathway: control of the NAD Figley MD; DiAntonio A Curr Opin Neurobiol; 2020 Aug; 63():59-66. PubMed ID: 32311648 [TBL] [Abstract][Full Text] [Related]
18. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. Geisler S; Doan RA; Cheng GC; Cetinkaya-Fisgin A; Huang SX; Höke A; Milbrandt J; DiAntonio A JCI Insight; 2019 Sep; 4(17):. PubMed ID: 31484833 [TBL] [Abstract][Full Text] [Related]