These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 35780752)

  • 21. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orbital Electrowetting-on-Dielectric for Droplet Manipulation on Superhydrophobic Surfaces.
    Tan J; Fan Z; Zhou M; Liu T; Sun S; Chen G; Song Y; Wang Z; Jiang D
    Adv Mater; 2024 Jun; 36(24):e2314346. PubMed ID: 38582970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a Coating-Less Aluminum Superhydrophobic Gradient for Spontaneous Water Droplet Motion Using One-Step Laser-Ablation.
    Misiiuk K; Lowrey S; Blaikie R; Juras J; Sommers A
    Langmuir; 2022 Feb; 38(6):1954-1965. PubMed ID: 35113579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Transitional Wettability on Bamboo-Leaf-like Hierarchical-Structured Si Surface Fabricated by Microgrinding.
    Li P; Wang J; Huang J; Xiang J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes.
    Liu X; Yang F; Guo J; Fu J; Guo Z
    Chem Commun (Camb); 2020 Nov; 56(94):14757-14788. PubMed ID: 33125006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities.
    Zhang S; Zhao L; Yu M; Guo J; Liu C; Zhu C; Zhao M; Huang Y; Zheng Y
    Langmuir; 2024 May; 40(19):9873-9891. PubMed ID: 38695884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Superhydrophobic Grooves Drive Single-Droplet Jumping.
    Chu F; Yan X; Miljkovic N
    Langmuir; 2022 Apr; 38(14):4452-4460. PubMed ID: 35348343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion.
    Guo DY; Li CH; Chang LM; Jau HC; Lo WC; Lin WC; Wang CT; Lin TH
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale Microflower Structured Superhydrophobic Surface via Electrostatic Air Spray.
    Chen F; Liu X; He T; Wang Y
    Langmuir; 2023 Jul; 39(28):9893-9902. PubMed ID: 37403972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.
    Ciasca G; Papi M; Businaro L; Campi G; Ortolani M; Palmieri V; Cedola A; De Ninno A; Gerardino A; Maulucci G; De Spirito M
    Bioinspir Biomim; 2016 Feb; 11(1):011001. PubMed ID: 26844980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Field for Dynamic Liquid Droplet Manipulation.
    Li Y; Li J; Liu L; Yan Y; Zhang Q; Zhang N; He L; Liu Y; Zhang X; Tian D; Leng J; Jiang L
    Adv Sci (Weinh); 2020 Sep; 7(18):2000772. PubMed ID: 32999834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.