BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35780763)

  • 1. Bio-inspired CO
    Lodh J; Roy S
    J Inorg Biochem; 2022 Sep; 234():111903. PubMed ID: 35780763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate.
    Rouf S; Greish YE; Al-Zuhair S
    Chemosphere; 2021 Mar; 267():128921. PubMed ID: 33190911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide.
    Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J
    J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO
    Shiekh BA; Kaur D; Kumar S
    Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO
    Chen Y; Li P; Noh H; Kung CW; Buru CT; Wang X; Zhang X; Farha OK
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7682-7686. PubMed ID: 30913356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The challenges of using NAD
    Alpdağtaş S; Turunen O; Valjakka J; Binay B
    Crit Rev Biotechnol; 2022 Sep; 42(6):953-972. PubMed ID: 34632901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Nanocaged Enzymes for Synergistic Catalysis of CO
    Jia Z; Dang J; Wen G; Zhang Y; Chen Z; Bai Z; Yang L
    Adv Sci (Weinh); 2023 Jul; 10(20):e2300752. PubMed ID: 37162224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition.
    Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D
    Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formate Dehydrogenases Reduce CO
    Meneghello M; Oliveira AR; Jacq-Bailly A; Pereira IAC; Léger C; Fourmond V
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9964-9967. PubMed ID: 33599383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
    Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J
    J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation.
    Vilela-Alves G; Manuel RR; Oliveira AR; Pereira IC; Romão MJ; Mota C
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH-dependent formate dehydrogenase mutants for efficient carbon dioxide fixation.
    Xue Y; Ji X; Li Z; Ma F; Jiang J; Huang Y
    Bioresour Technol; 2024 Feb; 393():130027. PubMed ID: 37977496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.