These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35780833)

  • 1. Modularity of the hydrophobic core and evolution of functional diversity in fold A glycosyltransferases.
    Venkat A; Tehrani D; Taujale R; Yeung W; Gravel N; Moremen KW; Kannan N
    J Biol Chem; 2022 Aug; 298(8):102212. PubMed ID: 35780833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases.
    Taujale R; Venkat A; Huang LC; Zhou Z; Yeung W; Rasheed KM; Li S; Edison AS; Moremen KW; Kannan N
    Elife; 2020 Apr; 9():. PubMed ID: 32234211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites.
    Kadirvelraj R; Yang JY; Kim HW; Sanders JH; Moremen KW; Wood ZA
    J Biol Chem; 2021; 296():100110. PubMed ID: 33229435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fold recognition analysis of glycosyltransferase families: further members of structural superfamilies.
    Franco OL; Rigden DJ
    Glycobiology; 2003 Oct; 13(10):707-12. PubMed ID: 12881407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosyltransferases: structures, functions, and mechanisms.
    Lairson LL; Henrissat B; Davies GJ; Withers SG
    Annu Rev Biochem; 2008; 77():521-55. PubMed ID: 18518825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics.
    Ramirez-Mondragon CA; Nguyen ME; Milicaj J; Hassan BA; Tucci FJ; Muthyala R; Gao J; Taylor EA; Sham YY
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationships of membrane-associated GT-B glycosyltransferases.
    Albesa-Jové D; Giganti D; Jackson M; Alzari PM; Guerin ME
    Glycobiology; 2014 Feb; 24(2):108-24. PubMed ID: 24253765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis.
    Romero-García J; Francisco C; Biarnés X; Planas A
    PLoS One; 2013; 8(12):e81990. PubMed ID: 24312618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases.
    Tarbouriech N; Charnock SJ; Davies GJ
    J Mol Biol; 2001 Dec; 314(4):655-61. PubMed ID: 11733986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide-synthesizing glycosyltransferases and carbohydrate binding modules: the case of starch synthase III.
    Gomez-Casati DF; Martín M; Busi MV
    Protein Pept Lett; 2013 Aug; 20(8):856-63. PubMed ID: 23286550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Structural Studies on the GT-C Superfamily of Protein Glycosyltransferases.
    Bohl H; Bai L; Li H
    Subcell Biochem; 2021; 96():259-271. PubMed ID: 33252732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism.
    Schuman B; Evans SV; Fyles TM
    PLoS One; 2013; 8(8):e71077. PubMed ID: 23936487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase.
    Larivière L; Sommer N; Moréra S
    J Mol Biol; 2005 Sep; 352(1):139-50. PubMed ID: 16081100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism.
    Pak JE; Arnoux P; Zhou S; Sivarajah P; Satkunarajah M; Xing X; Rini JM
    J Biol Chem; 2006 Sep; 281(36):26693-701. PubMed ID: 16829524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved domains of glycosyltransferases.
    Kapitonov D; Yu RK
    Glycobiology; 1999 Oct; 9(10):961-78. PubMed ID: 10521532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases.
    Malik V; Black GW
    Adv Protein Chem Struct Biol; 2012; 87():87-115. PubMed ID: 22607753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mechanistic characterization of leukocyte-type core 2 β1,6-N-acetylglucosaminyltransferase: a metal-ion-independent GT-A glycosyltransferase.
    Pak JE; Satkunarajah M; Seetharaman J; Rini JM
    J Mol Biol; 2011 Dec; 414(5):798-811. PubMed ID: 22056345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Characterization and Computational Modeling of
    Hassan BA; Liu ZA; Milicaj J; Kim MS; Tyson M; Sham YY; Taylor EA
    Biochemistry; 2022 Aug; 61(15):1572-1584. PubMed ID: 35861590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization.
    Mohanty S; Oruganty K; Kwon A; Byrne DP; Ferries S; Ruan Z; Hanold LE; Katiyar S; Kennedy EJ; Eyers PA; Kannan N
    PLoS Genet; 2016 Feb; 12(2):e1005885. PubMed ID: 26925779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.