BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35780900)

  • 1. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals.
    Che J; Zhang W; Ma B; Chen Y; Wang L; Wang C
    Sci Total Environ; 2022 Oct; 843():157063. PubMed ID: 35780900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-treatment of copper smelting flue dust and arsenic sulfide residue by a pyrometallurgical approach for simultaneous removal and recovery of arsenic.
    Zhang W; Che J; Wen P; Xia L; Ma B; Chen J; Wang C
    J Hazard Mater; 2021 Aug; 416():126149. PubMed ID: 34492933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits.
    Che J; Zhang W; Deen KM; Wang C
    J Hazard Mater; 2024 Mar; 465():133039. PubMed ID: 38006856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust.
    Shi T; Xu B; He J; Liu X; Zuo Z
    Environ Pollut; 2023 Aug; 330():121809. PubMed ID: 37172770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction.
    Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C
    J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation.
    Zhang W; Che J; Xia L; Wen P; Chen J; Ma B; Wang C
    J Hazard Mater; 2021 Jun; 412():125232. PubMed ID: 33951866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust.
    Jarošíková A; Ettler V; Mihaljevič M; Drahota P; Culka A; Racek M
    J Environ Manage; 2018 Mar; 209():71-80. PubMed ID: 29276995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.
    Jarošíková A; Ettler V; Mihaljevič M; Penížek V; Matoušek T; Culka A; Drahota P
    Environ Pollut; 2018 Jun; 237():83-92. PubMed ID: 29477118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation and recovery of heavy metals zinc and lead from phosphorus flue dust by vacuum metallurgy.
    Ji W; Xie K; Yan S
    J Environ Manage; 2021 Sep; 294():113001. PubMed ID: 34111595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective separation process of arsenic, lead, and zinc from high arsenic-containing copper smelting ashes by alkali leaching followed by sulfide precipitation.
    Zhang Y; Feng X; Jin B
    Waste Manag Res; 2020 Nov; 38(11):1214-1221. PubMed ID: 32515295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and assessment of heavy metals in soils around the industrial areas in Mettur, Tamilnadu, India.
    Ramesh Kumar K; Anbazhagan V
    Environ Monit Assess; 2018 Aug; 190(9):519. PubMed ID: 30112661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process.
    Shibayama A; Takasaki Y; William T; Yamatodani A; Higuchi Y; Sunagawa S; Ono E
    J Hazard Mater; 2010 Sep; 181(1-3):1016-23. PubMed ID: 20619796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling and reutilization of smelting dust as a secondary resource: A review.
    Liu X; Wu F; Qu G; Zhang T; He M
    J Environ Manage; 2023 Dec; 347():119228. PubMed ID: 37806275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pollution Characteristics and Health Risk Assessment of Heavy Metals in Road Dust from Non-ferrous Smelting Parks].
    Feng YY; Shi JW; Zhong YQ; Han XY; Feng YC; Ren L
    Huan Jing Ke Xue; 2020 Aug; 41(8):3547-3555. PubMed ID: 33124327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A green method to clean copper slag and rapidly recover copper resources via reduction-sulfurizing smelting and super-gravity separation at low temperature.
    Wang Z; Gao J; Lan X; Guo Z
    J Hazard Mater; 2024 Apr; 468():133834. PubMed ID: 38387176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali circulating leaching of arsenic from copper smelter dust based on arsenic-alkali efficient separation.
    Tian J; Zhang X; Wang Y; Han H; Sun W; Yue T; Sun J
    J Environ Manage; 2021 Jun; 287():112348. PubMed ID: 33735678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological risk assessment of arsenic, cadmium, copper, and lead contamination in soil in e-waste separating household area, Buriram province, Thailand.
    Amphalop N; Suwantarat N; Prueksasit T; Yachusri C; Srithongouthai S
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44396-44411. PubMed ID: 32770332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.
    Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M
    Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.