BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35781024)

  • 1. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.
    Reiner E; Weston F; Pleshko N; Querido W
    Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of micro- and nanoscale heterogeneities within environmentally relevant thin films containing biological components, oxyanions and minerals using AFM-PTIR spectroscopy.
    Kim D; Grassian VH
    Environ Sci Process Impacts; 2023 Mar; 25(3):484-495. PubMed ID: 36789672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR).
    Fellows AP; Casford MTL; Davies PB
    Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.
    Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS
    Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level.
    Bakir G; Girouard BE; Wiens R; Mastel S; Dillon E; Kansiz M; Gough KM
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Raman and Infrared Spectroscopy of Stable Isotope Labelled
    Lima C; Muhamadali H; Goodacre R
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization Sensitive Photothermal Mid-Infrared Spectroscopic Imaging of Human Bone Marrow Tissue.
    Mankar R; Gajjela CC; Bueso-Ramos CE; Yin CC; Mayerich D; Reddy RK
    Appl Spectrosc; 2022 Apr; 76(4):508-518. PubMed ID: 35236126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of Malaria Infected Red Blood Cells.
    Perez-Guaita D; Kochan K; Batty M; Doerig C; Garcia-Bustos J; Espinoza S; McNaughton D; Heraud P; Wood BR
    Anal Chem; 2018 Mar; 90(5):3140-3148. PubMed ID: 29327915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier-Transform Atomic Force Microscope-Based Photothermal Infrared Spectroscopy with Broadband Source.
    Xie Q; Xu XG
    Nano Lett; 2022 Nov; 22(22):9174-9180. PubMed ID: 36368003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy.
    Baghel D; de Oliveira AP; Satyarthy S; Chase WE; Banerjee S; Ghosh A
    Methods Enzymol; 2024; 697():113-150. PubMed ID: 38816120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging.
    Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH
    J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.
    Ramachandran G
    Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.