BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35781032)

  • 1. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1.
    Weber JJ; Brummett LM; Coca ME; Tabunoki H; Kanost MR; Ragan EJ; Park Y; Gorman MJ
    Insect Biochem Mol Biol; 2022 Aug; 147():103811. PubMed ID: 35781032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster.
    Xiao G; Liu ZH; Zhao M; Wang HL; Zhou B
    Cell Rep; 2019 Jan; 26(3):748-758.e5. PubMed ID: 30650364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron sequestration by transferrin 1 mediates nutritional immunity in
    Iatsenko I; Marra A; Boquete JP; Peña J; Lemaitre B
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7317-7325. PubMed ID: 32188787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between
    Marra A; Masson F; Lemaitre B
    Microlife; 2021; 2():uqab008. PubMed ID: 37223258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect transferrins: multifunctional proteins.
    Geiser DL; Winzerling JJ
    Biochim Biophys Acta; 2012 Mar; 1820(3):437-51. PubMed ID: 21810453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved asparagine residue stabilizes iron binding in Manduca sexta transferrin-1.
    Weber JJ; Geisbrecht BV; Kanost MR; Gorman MJ
    Insect Biochem Mol Biol; 2024 May; 168():104109. PubMed ID: 38494145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis.
    Weber JJ; Kanost MR; Gorman MJ
    Insect Biochem Mol Biol; 2020 Oct; 125():103438. PubMed ID: 32735914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin Increases Life Span, Restores the Locomotor Activity, and Reduces Lipid Peroxidation (LPO) in Transgenic Knockdown Parkin Drosophila melanogaster Exposed to Paraquat or Paraquat/Iron.
    Ortega-Arellano HF; Jimenez-Del-Rio M; Velez-Pardo C
    Neurotox Res; 2021 Oct; 39(5):1551-1563. PubMed ID: 34339012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The immune properties of Manduca sexta transferrin.
    Brummett LM; Kanost MR; Gorman MJ
    Insect Biochem Mol Biol; 2017 Feb; 81():1-9. PubMed ID: 27986638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect, Manduca sexta.
    Weber JJ; Kashipathy MM; Battaile KP; Go E; Desaire H; Kanost MR; Lovell S; Gorman MJ
    Protein Sci; 2021 Feb; 30(2):408-422. PubMed ID: 33197096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferrin1 modulates rotenone-induced Parkinson's disease through affecting iron homeostasis in Drosophila melanogaster.
    Xue J; Wang HL; Xiao G
    Biochem Biophys Res Commun; 2020 Oct; 531(3):305-311. PubMed ID: 32800558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism.
    Bonilla-Ramirez L; Jimenez-Del-Rio M; Velez-Pardo C
    Gene; 2013 Jan; 512(2):355-63. PubMed ID: 23046578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in Drosophila melanogaster.
    Lopez TE; Pham HM; Nguyen BV; Tahmasian Y; Ramsden S; Coskun V; Schriner SE; Jafari M
    Arch Insect Biochem Physiol; 2016 Dec; 93(4):210-221. PubMed ID: 27696504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism.
    Ortega-Arellano HF; Jimenez-Del-Rio M; Velez-Pardo C
    Neurotoxicology; 2017 May; 60():42-53. PubMed ID: 28284907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pequi enriched diets protect
    Duavy SM; Ecker A; Salazar GT; Loreto J; Costa JGMD; Vargas Barbosa N
    J Toxicol Environ Health A; 2019; 82(11):664-677. PubMed ID: 31317820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of age on radiation resistance and oxidative stress in adult Drosophila melanogaster.
    Parashar V; Frankel S; Lurie AG; Rogina B
    Radiat Res; 2008 Jun; 169(6):707-11. PubMed ID: 18494545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction.
    Hosamani R;
    Arch Insect Biochem Physiol; 2013 May; 83(1):25-40. PubMed ID: 23564607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster.
    Dos Santos Nunes RG; Pereira PS; Elekofehinti OO; Fidelis KR; da Silva CS; Ibrahim M; Barros LM; da Cunha FAB; Lukong KE; de Menezes IRA; Tsopmo A; Duarte AE; Kamdem JP
    Pestic Biochem Physiol; 2019 Jun; 157():161-168. PubMed ID: 31153464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.
    Zemanová M; Stašková T; Kodrík D
    J Insect Physiol; 2016; 91-92():39-47. PubMed ID: 27374982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glutathione, catechin, and epicatechin on the survival of Drosophila melanogaster under paraquat treatment.
    Kim SJ; Han D; Ahn BH; Rhee JS
    Biosci Biotechnol Biochem; 1997 Feb; 61(2):225-9. PubMed ID: 9058958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.