BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 35781526)

  • 1. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities.
    Zabihi M; Lotfi R; Yousefi AM; Bashash D
    J Cancer Res Clin Oncol; 2023 Apr; 149(4):1585-1606. PubMed ID: 35781526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclins and CDKS in development and cancer: lessons from genetically modified mice.
    Santamaria D; Ortega S
    Front Biosci; 2006 Jan; 11():1164-88. PubMed ID: 16146805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer.
    Ding L; Cao J; Lin W; Chen H; Xiong X; Ao H; Yu M; Lin J; Cui Q
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current concepts in neuro-oncology: the cell cycle--a review.
    Dirks PB; Rutka JT
    Neurosurgery; 1997 May; 40(5):1000-13; discussion 1013-5. PubMed ID: 9149259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3; 1-overexpressing plants.
    Jasinski S; Riou-Khamlichi C; Roche O; Perennes C; Bergounioux C; Glab N
    J Cell Sci; 2002 Mar; 115(Pt 5):973-82. PubMed ID: 11870216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human.
    Lee YM; Sicinski P
    Cell Cycle; 2006 Sep; 5(18):2110-4. PubMed ID: 16969111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs.
    Roskoski R
    Pharmacol Res; 2016 May; 107():249-275. PubMed ID: 26995305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into avian reovirus p17-modulated suppression of cell cycle CDK-cyclin complexes and enhancement of p53 and cyclin H interaction.
    Chiu HC; Huang WR; Liao TL; Chi PI; Nielsen BL; Liu JH; Liu HJ
    J Biol Chem; 2018 Aug; 293(32):12542-12562. PubMed ID: 29907572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative regulators of cyclin-dependent kinases and their roles in cancers.
    Lee MH; Yang HY
    Cell Mol Life Sci; 2001 Nov; 58(12-13):1907-22. PubMed ID: 11766887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting.
    Gupta A; Dagar G; Chauhan R; Sadida HQ; Almarzooqi SK; Hashem S; Uddin S; Macha MA; Akil ASA; Pandita TK; Bhat AA; Singh M
    Adv Protein Chem Struct Biol; 2023; 135():21-55. PubMed ID: 37061333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The driving power of the cell cycle: cyclin-dependent kinases, cyclins and their inhibitors.
    Hives M; Jurecekova J; Holeckova KH; Kliment J; Sivonova MK
    Bratisl Lek Listy; 2023; 124(4):261-266. PubMed ID: 36598318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the "Cdk-centric" view of the mammalian cell cycle.
    Malumbres M
    Cell Cycle; 2005 Feb; 4(2):206-10. PubMed ID: 15655365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms.
    Asghar A; Chohan TA; Khurshid U; Saleem H; Mustafa MW; Khursheed A; Alafnan A; Batul R; Bin Break MK; Almansour K; Anwar S
    Chem Biol Interact; 2024 Apr; 393():110940. PubMed ID: 38467339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclin-dependent kinase inhibitors and the treatment of gastrointestinal cancers.
    Mikhail S; Albanese C; Pishvaian MJ
    Am J Pathol; 2015 May; 185(5):1185-97. PubMed ID: 25747534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclin-dependent kinase inhibition: an opportunity to target protein-protein interactions.
    Klein MA
    Adv Protein Chem Struct Biol; 2020; 121():115-141. PubMed ID: 32312419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.
    Roskoski R
    Pharmacol Res; 2019 Jan; 139():471-488. PubMed ID: 30508677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of rat postnatal lung alveolar development by glucocorticoids: involvement of the p21CIP1 and p27KIP1 cyclin-dependent kinase inhibitors.
    Corroyer S; Schittny JC; Djonov V; Burri PH; Clement A
    Pediatr Res; 2002 Feb; 51(2):169-76. PubMed ID: 11809910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclinT/Cdk9 complex in basal and regulated transcription (review).
    Napolitano G; Majello B; Lania L
    Int J Oncol; 2002 Jul; 21(1):171-7. PubMed ID: 12063565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of G1 progression by D-type cyclins: key event for cell proliferation.
    Kato JY
    Leukemia; 1997 Apr; 11 Suppl 3():347-51. PubMed ID: 9209386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.