BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35781696)

  • 1. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implant-friendly MRI of deep brain stimulation electrodes at 7 T.
    Sadeghi-Tarakameh A; DelaBarre L; Zulkarnain NIH; Harel N; Eryaman Y
    Magn Reson Med; 2023 Dec; 90(6):2627-2642. PubMed ID: 37533196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2019 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple geometric analysis method for measuring and mitigating RF induced currents on Deep Brain Stimulation leads by multichannel transmission/reception.
    Eryaman Y; Kobayashi N; Moen S; Aman J; Grant A; Vaughan JT; Molnar G; Park MC; Vitek J; Adriany G; Ugurbil K; Harel N
    Neuroimage; 2019 Jan; 184():658-668. PubMed ID: 30273715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical Note: An anthropomorphic phantom with implanted neurostimulator for investigation of MRI safety.
    Yang B; Tam F; Davidson B; Wei PS; Hamani C; Lipsman N; Chen CH; Graham SJ
    Med Phys; 2020 Aug; 47(8):3745-3751. PubMed ID: 32350868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep brain stimulation lead-contact heating during 3T MRI: single- versus dual-channel pulse generator configurations.
    Nazzaro JM; Klemp JA; Brooks WM; Cook-Wiens G; Mayo MS; Van Acker GM; Lyons KE; Cheney PD
    Int J Neurosci; 2014 Mar; 124(3):166-74. PubMed ID: 24000873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients.
    Sammartino F; Krishna V; Sankar T; Fisico J; Kalia SK; Hodaie M; Kucharczyk W; Mikulis DJ; Crawley A; Lozano AM
    J Neurosurg; 2017 Oct; 127(4):892-898. PubMed ID: 28009238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels.
    Guerin B; Angelone LM; Dougherty D; Wald LL
    Magn Reson Med; 2020 Jan; 83(1):299-311. PubMed ID: 31389069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.