BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35781766)

  • 1. Rapid and Highly Sensitive Detection of Target DNA Related to COVID-19 Virus With a Fluorescent Bio-conjugated Probe via a FRET Mechanism.
    Bardajee GR; Zamani M; Sharifi M; Rezanejad H; Motallebi M
    J Fluoresc; 2022 Sep; 32(5):1959-1967. PubMed ID: 35781766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Versatile Application of Fluorescence DNA-Conjugated CdTe Quantum Dots Nanoprobe for Detection of a Specific Target DNA of SARS Cov-2 Virus.
    Bardajee GR; Zamani M; Sharifi M
    Langmuir; 2021 Aug; 37(33):10223-10232. PubMed ID: 34379978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
    Ghoneim M; Musselman CA
    J Fluoresc; 2023 Mar; 33(2):413-421. PubMed ID: 36435903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver enhanced ratiometric nanosensor based on two adjustable Fluorescence Resonance Energy Transfer modes for quantitative protein sensing.
    Li H; Zhao Y; Chen Z; Xu D
    Biosens Bioelectron; 2017 Jan; 87():428-432. PubMed ID: 27589407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2.
    Kang B; Lee Y; Lim J; Yong D; Ki Choi Y; Woo Yoon S; Seo S; Jang S; Uk Son S; Kang T; Jung J; Lee KS; Kim MH; Lim EK
    Chem Eng J; 2022 Aug; 442():136143. PubMed ID: 35382003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence resonance energy transfer sensor based on maltose binding protein.
    Medintz IL; Goldman ER; Lassman ME; Mauro JM
    Bioconjug Chem; 2003; 14(5):909-18. PubMed ID: 13129393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.
    Ren X; Xue Q; Wen L; Li X; Wang H
    Anal Chim Acta; 2019 Apr; 1053():114-121. PubMed ID: 30712556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Detection of Amplified DNA by Polymerase Chain Reaction Using a Genetic Alphabet Expansion System.
    Yamashige R; Kimoto M; Okumura R; Hirao I
    J Am Chem Soc; 2018 Oct; 140(43):14038-14041. PubMed ID: 30336010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids.
    Di Fiori N; Meller A
    Biophys J; 2010 May; 98(10):2265-72. PubMed ID: 20483335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level.
    Qaddare SH; Salimi A
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):773-780. PubMed ID: 27816581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.
    Yang LH; Ahn DJ; Koo E
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():625-30. PubMed ID: 27612755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide substrate screening for the diagnosis of SARS-CoV-2 using fluorescence resonance energy transfer (FRET) assay.
    Alhadrami HA; Hassan AM; Chinnappan R; Al-Hadrami H; Abdulaal WH; Azhar EI; Zourob M
    Mikrochim Acta; 2021 Mar; 188(4):137. PubMed ID: 33763734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide.
    Piao Y; Liu F; Seo TS
    Chem Commun (Camb); 2011 Nov; 47(44):12149-51. PubMed ID: 21993302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OFF-to-ON type fluorescent probe for the detection of 8-oxo-dG in DNA by the Adap-masked ODN probe.
    Taniguchi Y; Koga Y; Fukabori K; Kawaguchi R; Sasaki S
    Bioorg Med Chem Lett; 2012 Jan; 22(1):543-6. PubMed ID: 22119473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance determination in protein-DNA complexes using fluorescence resonance energy transfer.
    Lorenz M; Diekmann S
    Methods Mol Biol; 2006; 335():243-55. PubMed ID: 16785632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation-free single-base extension assay with fluorescence resonance energy transfer for rapid and convenient determination of DNA methylation status at specific cytosine and guanine dinucleotide sites.
    Fujita K; Hashimoto M
    Electrophoresis; 2019 Jan; 40(2):281-288. PubMed ID: 30280389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.