These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35782020)
1. A Simple Alcohol-based Method of Oocyst Inactivation for Use in the Development of Detection Assays for Hagos B; Molestina RE Food Waterborne Parasitol; 2022 Jun; 27():e00163. PubMed ID: 35782020 [No Abstract] [Full Text] [Related]
2. Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Jenkins MB; Anguish LJ; Bowman DD; Walker MJ; Ghiorse WC Appl Environ Microbiol; 1997 Oct; 63(10):3844-50. PubMed ID: 9327547 [TBL] [Abstract][Full Text] [Related]
3. In vitro excystation of Cryptosporidium muris oocysts and viability of released sporozoites in different incubation media. Melicherová J; Mazourová V; Valigurová A Parasitol Res; 2016 Mar; 115(3):1113-21. PubMed ID: 26678654 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts. Quilez J; Sanchez-Acedo C; Avendaño C; del Cacho E; Lopez-Bernad F Appl Environ Microbiol; 2005 May; 71(5):2479-83. PubMed ID: 15870337 [TBL] [Abstract][Full Text] [Related]
5. Effect of Glycosaminoglycans on Mayerberger EA; Yazdanparast Tafti S; Jedlicka SS; Jellison KL Appl Environ Microbiol; 2023 Mar; 89(3):e0173722. PubMed ID: 36790186 [No Abstract] [Full Text] [Related]
6. Evaluation of Cryptosporidium parvum oocyst inactivation following exposure to ultraviolet light-emitting diodes by in vitro excystation and dye staining assays. Matsubayashi M; Teramoto I; Urakami I; Naohara J; Sasai K; Kido Y; Kaneko A Parasitol Int; 2022 Jun; 88():102557. PubMed ID: 35134539 [TBL] [Abstract][Full Text] [Related]
7. Improvement of in vitro evaluation of chemical disinfectants for efficacy on Cryptosporidium parvum oocysts. Delling C; Lendner M; Müller U; Daugschies A Vet Parasitol; 2017 Oct; 245():5-13. PubMed ID: 28969838 [TBL] [Abstract][Full Text] [Related]
8. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Shahiduzzaman M; Dyachenko V; Keidel J; Schmäschke R; Daugschies A Vet Parasitol; 2010 Jan; 167(1):43-9. PubMed ID: 19850414 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts. Bukhari Z; Marshall MM; Korich DG; Fricker CR; Smith HV; Rosen J; Clancy JL Appl Environ Microbiol; 2000 Jul; 66(7):2972-80. PubMed ID: 10877794 [TBL] [Abstract][Full Text] [Related]
10. Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples. Angus SV; Kwon HJ; Yoon JY J Environ Monit; 2012 Dec; 14(12):3295-304. PubMed ID: 23152174 [TBL] [Abstract][Full Text] [Related]
11. Use of ultrasound irradiation to inactivate Cryptosporidium parvum oocysts in effluents from municipal wastewater treatment plants. Abeledo-Lameiro MJ; Ares-Mazás E; Goméz-Couso H Ultrason Sonochem; 2018 Nov; 48():118-126. PubMed ID: 30080534 [TBL] [Abstract][Full Text] [Related]
12. Comparison of in vitro viability methods for Cryptosporidium oocysts. Vande Burgt NH; Auer A; Zintl A Exp Parasitol; 2018 Apr; 187():30-36. PubMed ID: 29518450 [TBL] [Abstract][Full Text] [Related]
13. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. Liang Z; Keeley A Water Res; 2012 Nov; 46(18):5941-53. PubMed ID: 22980572 [TBL] [Abstract][Full Text] [Related]
14. Statistical comparison of excystation methods in Cryptosporidium parvum oocysts. Pecková R; Stuart PD; Sak B; Květoňová D; Kváč M; Foitová I Vet Parasitol; 2016 Oct; 230():1-5. PubMed ID: 27884435 [TBL] [Abstract][Full Text] [Related]
15. [Investigation of the Effect of Pasteurization on the Viability of Cryptosporidium parvum in Cow's Milk by Propidium Monoazide qPCR]. Aydemir S; Durmaz H; Aydemir ME; Kılıç Altun S; Demir A; Halidi AG; Arslan A Mikrobiyol Bul; 2023 Oct; 57(4):660-666. PubMed ID: 37885393 [TBL] [Abstract][Full Text] [Related]
16. Use of Oxidative Stress Responses to Determine the Efficacy of Inactivation Treatments on Temesgen TT; Tysnes KR; Robertson LJ Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361899 [No Abstract] [Full Text] [Related]
17. Cryptosporidium parvum studies with dairy products. Deng MQ; Cliver DO Int J Food Microbiol; 1999 Feb; 46(2):113-21. PubMed ID: 10728612 [TBL] [Abstract][Full Text] [Related]
18. Comparison of assays for sensitive and reproducible detection of cell culture-infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. Johnson AM; Giovanni GD; Rochelle PA Appl Environ Microbiol; 2012 Jan; 78(1):156-62. PubMed ID: 22038611 [TBL] [Abstract][Full Text] [Related]
19. Cryptosporidium parvum oocysts recovered from water by the membrane filter dissolution method retain their infectivity. Graczyk TK; Fayer R; Cranfield MR; Owens R J Parasitol; 1997 Feb; 83(1):111-4. PubMed ID: 9057705 [TBL] [Abstract][Full Text] [Related]
20. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Korich DG; Mead JR; Madore MS; Sinclair NA; Sterling CR Appl Environ Microbiol; 1990 May; 56(5):1423-8. PubMed ID: 2339894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]