These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35782037)

  • 21. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters.
    Ripic Z; Signorile JF; Kuenze C; Eltoukhy M
    J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of Markerless Motion Capture for Three-Dimensional Gait Assessment in Community Settings.
    McGuirk TE; Perry ES; Sihanath WB; Riazati S; Patten C
    Front Hum Neurosci; 2022; 16():867485. PubMed ID: 35754772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity.
    Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Between-day reliability and minimum detectable change of the Conventional Gait Model 2 and Plug-in Gait Model during running.
    Okahisa T; Matsuura T; Tomonari K; Komatsu K; Yokoyama K; Iwase J; Yamada M; Sairyo K
    Gait Posture; 2023 Feb; 100():171-178. PubMed ID: 36563589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment.
    Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA
    J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lower limb joint angles and their variability during uphill walking.
    Sarvestan J; Ataabadi PA; Yazdanbakhsh F; Abbasi S; Abbasi A; Svoboda Z
    Gait Posture; 2021 Oct; 90():434-440. PubMed ID: 34597985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration.
    Berner K; Cockcroft J; Morris LD; Louw Q
    J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm.
    Ota M; Tateuchi H; Hashiguchi T; Ichihashi N
    Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.
    Eltoukhy M; Oh J; Kuenze C; Signorile J
    Gait Posture; 2017 Jan; 51():77-83. PubMed ID: 27721202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump.
    Drazan JF; Phillips WT; Seethapathi N; Hullfish TJ; Baxter JR
    J Biomech; 2021 Aug; 125():110547. PubMed ID: 34175570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sex differences in age-related differences in joint motion during gait in community-dwelling middle-age and older individuals.
    Araki S; Kiyama R; Nakai Y; Kawada M; Miyazaki T; Takeshita Y; Makizako H
    Gait Posture; 2023 Jun; 103():153-158. PubMed ID: 37182382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Day-to-day reliability of gait characteristics in rats.
    Raffalt PC; Nielsen LR; Madsen S; Munk Højberg L; Pingel J; Nielsen JB; Wienecke J; Alkjær T
    J Biomech; 2018 Apr; 72():247-251. PubMed ID: 29530501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validity of the Microsoft Kinect
    Oh J; Kuenze C; Jacopetti M; Signorile JF; Eltoukhy M
    Med Eng Phys; 2018 Oct; 60():70-76. PubMed ID: 30097314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Markerless vs. Marker-Based Gait Analysis: A Proof of Concept Study.
    Moro M; Marchesi G; Hesse F; Odone F; Casadio M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.